DON FRAMPTON - PRESENTATION to THE COASTAL PANEL
3rd Dec 2013

My concerns relate to certain assumptions and omissions corresponding to the Science behind the KCDC 50 and 100 year future Hazard Lines - as determined through Dr Shand’s 2008 Kapiti Coast Erosion Hazard Assessment and the 2012 Update (“the Report”).

I wish to speak to the relevant “beach science” elements contained in my Submission and Re-submission and to elaborate with whiteboard sketches and discussion.

I respectfully ask if the Coastal Panel members could be pre-acquainted prior to such discussions with the particular sections of my submissions (as below scheduled). This will allow me to make the most of the limited discussion time set aside for me.

Notwithstanding, and to background and provide an overview of my main concerns, I summarise as follows:

1. The science **benchmarks to Climate change but “cherry picks”** by including only the predicted negative components of climate change, such as Rising Sea Level. Other equally important predicted components of climate change, such as increased rainfall and the corresponding positive of increased sediment supply are omitted. **Science by omission is not science.**

2. In the case of North Paraparaumu Beach, the Report says where such nonlinear behaviour (sic) is demonstrated and not fully understood, the precautionary approach is to use the more recent (erosional) trend. Unfortunately this means an **unrepresentative short term period of erosion has been extrapolated** to create very long term (50 and 100 year) hazard line projections. Due to climatic cycles and oscillations sometimes spanning many decades, it is inappropriate to project 50 and 100 years line positions without considering historic trends spanning back over similar periods of time. **This is a poor basis of science.**
3. Where **historic erosion rates have been partly affected by man** (eg through KCDC one-off and regular sand excavations) then the effect of such unnatural interventions **need to be quantified and added back to the historic trends** before such trends can be relied upon for extrapolation to determine forward hazard line projections. Alternatively, where only a short term trend period following the time and effect of such excavations is relied upon as seems to be the case in the Report relating to Nth Paraparaumu Beach, then (subject to the flawed methodology referred in 2. above) the finally determined line positions need to be one-off relocated seawards to reflect the unnatural erosion caused by such KCDC sand excavations. **Science that fails to properly consider unnatural erosion is simplistic and poor science.**

4. **If one credits back the 30 metres dune toe erosion** (which dynamics I will sketch) outside my property in North Paraparaumu beach, which was caused directly and indirectly through the circa 1994 KCDC intertidal excavation and the subsequent corresponding lateral erosion northwards (together with the annual sand budget continually trucked away as a result of stormwater pipe clearances) then there has been **almost zero erosion from natural causes in 28 years. If that historic trend is 2 x projected to 56 years it is still zero erosion.** If one looks at the extreme height of the dunes now versus the Spinifex type dune that was lost, even any regression rate proven will be a de-accelerating rate. 1985 aerial and 2013 photos of stormwater culvert to compare. **Science that sets hazard lines without proper regard to the true natural underlying erosion/accretion trend is poor science.**

5. Wave energy, the protection of Kapiti, the cyclical nature of average wind shifts, erosion formulae that sets accretion back to zero and increased margins of error where formulae includes a dune settling component where extrapolating only short term trends. **Some areas of poor science if not properly considered.**

6. There seems to be **no automatic and transparent update mechanism** whereby changes to any “latest” RSL figures are immediately plugged into (say) a published hazard line determination formula sheet/s. Hazard line projections need to be updated efficiently and immediately upon any latest change-data becoming known (ex IPCC, or as may be adopted by MFE). Indeed, I understand IPCC have already lowered their RSL figures based on a recent period of non-
accelerating RSL, yet I have not seen any automatic amendment to the projected hazard lines. **If the science is not regularly updated (preferably by simply, automatic and transparent means) any good science will soon become poor science.**

MY BACKGROUND:

- Lived in a beachfront property – very north of North Paraparaumu Beach for circa 28 years.
- Mechanical Engineering service industry – ran my nationwide business from home
- Walked the beach - perhaps 2 times a week over that 28 year period
- Made empirical observations against fixed markers such as stormwater pipes on stanchions
- Correlated most characteristics of climate to any changes in beach behaviour during that time.
- Took particular interest in KCDC’s ongoing stormwater pipe clearance operations where sand was continually trucked away and took particular interest in the unusual beach dynamics that followed their circa 1994 KCDC inter-tidal sand excavations.

Particular references that I will speak to in my Submission and Re-Submission:

SUBMISSION presented to KCDC:
1.1 to 1.3
2.1 to 2.4
4.2.2
4.2.3
4.2.5
Appendix B (page 2 of 2)
Appendix C (heading 2. Possible causes – 2nd paragraph)
Appendix C (page 4 of 4)
Appendix D (page 1 of 1 – 2nd Paragraph)
Appendix E (page 2 of 2)
Appendix F (page 1 of 1)
Appendix G (page 1 of 1 – profile 182)

RE-SUBMISSION presented to KCDC:
A to C
Resource Management Act 1991

Submission to:

Proposed Kapiti Coast District Plan 2012

Submissions close Fri 1 March, 4pm (or Tues 2 April, 5pm for submissions on specified coastal provisions).

Post:
Kapiti Coast District Council
Private Bag 60601
Paraparaumu 5254
Attention: Jim Ebenhoh, Sustainable Development Manager

Deliver:
Paraparaumu Service Centre, Unit 7, Kapiti Lights Complex
Paraparaumu
Waikanae Service Centre, Mahara Place, Waikanae
Otaki Service Centre, 81-83 Main Street, Otaki

Email:
submissions@kapiticoast.govt.nz

Please write contact details in clear BLOCK CAPITAL letters.

Is this an individual submission? (circle) Yes No

If this submission is from an organisation, please state the name of the organisation:

Title (circle) Mr Mrs Ms Miss Dr

First Name: DON Last Name: FRAMPTON

House Number: 10 Street Name: NUHAKA PLACE

P O Box: 575 Suburb:

Town: PARAPARAUMU Post Code: 5254

Email: person@xtra.co.nz

Phone Day: (04) 2986-932 Mobile Phone: 0274-401-271

Do you want to speak at the hearing in support of your submission? (circle) Yes No

If you circled yes then we will contact you about the timing of the hearings which will begin in mid 2013 following the submission process.

If others wish to make a similar submission would you be prepared to consider presenting a joint case? (circle) Yes No

Notes to person making submission:

Please note that all submissions (including names and contact details) will be made publicly available at council offices and public libraries. A summary of submissions including the name of the submitter may also be made publicly available and posted on the Kapiti Coast District Council website. Personal information will also be used for administration relating to the subject matter of the submissions, including notifying submitters of subsequent steps and decisions. All information will be held by the Kapiti Coast District Council, with submitters having the right to access and correct personal information.

If you are a person who could gain advantage in trade competition through the submission, your right to make a submission may be limited by clause 6 (4) of part 1 of Schedule 1 of the Resource Management Act.

I could/could not gain an advantage in trade competition through this submission.

If you could gain an advantage in trade competition through this submission please complete the following:

I am/am not* directly affected by an effect of the subject matter of this submission that:

a) adversely affects the environment; and
b) does not relate to trade competition or the effects of trade competition.

* please indicate by circling the word(s) in bold text that apply.
Please use the following table for your submission, attaching any extra sheets if necessary.

Name/Organisation: DON FRAMPTON

<table>
<thead>
<tr>
<th>Please state the specific provisions of the Proposed District Plan that your submission relates to and the specific changes or decision requested of Council (including the reasons for your views)</th>
<th>Support/Oppose/Seek Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see the attached pages.</td>
<td></td>
</tr>
</tbody>
</table>

(Please continue on a separate sheet if necessary)

Signature .. Date
(or person authorised to sign on behalf of submitter)

I have attached 22 pages to this submission.

Don't forget! Closing date for submissions is Fri 1 March, 4pm
(or Tues 2 April, 5pm for submissions on specified coastal provisions).
COASTAL HAZARD PROVISIONS

Corresponding to same numbered explanations below and the additional sub-points leading from those explanations, my main points include but are not limited to:

1. I oppose the coastal hazard lines shown on all the Kapiti Coast planning maps because I believe the supporting science is deficient. I ask that the lines are removed while the science is made robust and subjected to full and independent peer review.

2. I oppose the coastal hazard lines shown on the Paraparaumu Beach North map because, as they relate to this section of the Kapiti Coast in particular, I believe the supporting science is extraordinarily deficient. I ask that before any hazard line placement is considered pursuant to 1. above, that a more representative (longer term) trend be used in this Paraparaumu Beach North area to determine more accurate and representative hazard line positions. Such trend should be based on an historic period of (say) 50 years or so with a credit-allowance for the erosion effects of all unnatural (KCDC/man-made) sand excavations. I believe this would reposition the lines seaward by at least 30 metres meaning most properties in this area would not currently have lines across their properties.

3. I oppose the provisions and restrictions in the Proposed District Plan (PDP) associated with the coastal hazard lines because they are unreasonably restrictive well before any palpable effects of Climate Change are proven as defensible or not and I ask that such provisions and restrictions be removed pursuant to the RMA s 85 because they are unreasonable.

4. I oppose the provisions and restrictions in the Proposed District Plan (PDP) associated with the coastal hazard lines, and irrespective of 3. above. I ask that such provisions and restrictions be removed from the PDP until, at the very least, those who are most affected by the coastal hazard lines are properly and fully consulted (beach map by beach map area) as to their preferred range of response options to rising sea level (RSL).

5. I agree with the Coastal Ratepayers Union submission.

6. Notwithstanding 1. to 5. above, I oppose the coastal hazard lines and all associated provisions and restrictions in the PDP because I believe the process prior to PDP notification as it relates to the hazard lines and associated provisions and restrictions was grossly unfair, unilateral and devoid of any reasonable level of consultation or natural justice. I ask that the PDP process be delayed and made subject to reasonable consultation before being "re-designed" to take account of 4. above so that KCDC, submitters and affected property owners can avoid wasting time and money dealing with a PDP that, in the case of the hazard lines and associated provisions, has effectively put "the cart before the horse".
BACKGROUND

I have lived in my family beachfront home for circa 27 years. During this period I was self employed in the field of engineering services working mostly from home. This provided me with the opportunity to regularly walk the beach to closely observe our beach-system dynamics in a practical way. My empirical observations were also benchmarked against the many constant-position storm-water pipe outlets and stanchions that run through the dunes towards the intertidal area perpendicular to the shoreline. Such yardsticks allowed me to correlate beach-affecting natural phenomena and other man-made "events" with any immediate or delayed vertical and lateral beach change behaviour (lateral being essentially the dune-toe movement and changes to dune face). The range of natural phenomena and "events" included but were not limited to: wave characteristics and direction, rainfall, wind intensity, wind direction, littoral drift currents (essentially north to south), eddy and rip currents, dune formation and management, together with KCDC regular and one-off sand excavations, plus other spasmodic events such as sink-pit creation through river works and river mouth cuts – all of which in some way affected or had the potential to affect; sediment supply, distribution, retention and ultimately the accretion or erosion of the beach system.

EXPLANATIONS

1. COASTAL HAZARD LINE SCIENCE DEFICIENCIES - ALL OF KAPITI COAST

1.1 I believe the Kapiti Coast Erosion Hazard Assessment - 2012 Update is one-sided in dealing with the effects of Climate Change. While it considers the major negative impact of Climate Change (namely RSL), it fails to adequately consider an equally important positive impact of Climate Change (namely increased sediment supply to beaches as a result of predicted increases in rainfall) (referred in Appendix A). Through Climate Change, rainfall is predicted to gradually increase by around 14% over the next 50 years with an increase in deluges. This could translate to 30% more river energy which would significantly increase land erosion and river lode and consequently the rate that beach-building sediment arrives via our rivers (not to forget by way of cliff erosion north of Kapiti Coast as a direct result of RSL and the same littoral drift transportation of sediment from north to south that delivers the river sediment). In other words, the insidious RSL might be offset by an equally insidious increase in sediment supply to raise the beach level. Science that is conveniently exclusive (such exclusion justified perhaps because sediment supply increase is difficult and costly to predict) produces science without credibility. If it's acceptable to include negative-consequence science like RSL (which is also difficult and costly to predict) then it's appropriate to include offsetting positive-consequence science. Accordingly I ask that increased sediment supply studies be incorporated into the Hazard Report before such report is relied upon as a reasonable guide for PDP purposes.

1.2 I believe it is not good or transparent science to justify omissions (such as increased sediment supply caused by Climate Change) as precautionary margins of error. With things as important as Kapiti Coast properties and their valuations, insurance, amenity values, development restrictions, re-saleability and protection, KCDC have a duty of care to get the science right and mitigate any accruing damage liabilities that might need to be
paid out by KCDC to ratepayers in connection with relying upon a "she'll be right" level of science. I believe a transparent and suitably considered margin of error should be applied to each component of (more inclusive) science as reasonably best possible. Firstly: this allows margin/s of error to be easily identified and individually amended as situations change. Secondly: it allows third parties, such as property buyers, to make their own judgment on whether (transparent) margins of error are overly precautionary or not. Accordingly I ask that the science identifies and uses transparent margins of error and does not justify or use omissions as invisible or precautionary margins of error.

1.3 Following on from 1.2, it seems inappropriate when using erosion formulae (whether hybrid in design or not) to re-set long term accretion (LT) back to zero. This is overly precautionary and in some areas of the beach where sediment supply through littoral drift is relatively well retained, this will produce incorrect line positions. Dr Shand's Kapiti Coast Erosion Hazard Assessment - 2012 Update on pg 16 and 17 says: "Where positive rates occur, LT is set at zero, this being a precautionary measure used by the industry in recognition of the uncertainly inherent in predicting sustained seaward shoreline migration over prolonged periods of time where the underlying process is not well understood." (bold emphasis added). However, I believe such underlying accretion "process" (subject to the plus and minus likes of average wind direction shifts from year to year) is well understood in the case of the Paraparaumu Beach cuspate foreland. The increased accretion in this area is primarily a reflection of lower average wave energy as a result of Kapiti Island which allows for better sediment retention. If the aim is to produce a precautionary margin, then let that be shown as a transparent margin of error (a variable %, area by area) otherwise periodic or net accreting areas can suffer adverse line positioning if treated identically to rarely-accreting areas. Accordingly, I ask in determining 50 and 100 year hazard line positions, that long term accretion is not set back to zero unless the reasons for discounting the accretion IS well understood. Not fully understanding (or researching) the science behind empirical facts, does not justify a convenient exclusion of the facts when it comes to something this important.

2. COASTAL HAZARD LINE SCIENCE EXTRAORDINARY DEFICIENCIES - SPECIFIC TO PARAPARAUMU BEACH NORTH

2.1 This explanation relates to science deficiencies additional to those referred in 1 above and it is specific to Paraparaumu Beach North.

2.2 Dr Shand's Kapiti Coast Erosion Hazard Assessment - 2012 Update on page 20 says 3.2.1.2) says: "North Paraparaumu has undergone slow erosion (0.3 m/yr) since the 1960s with accretion occurring prior to this; such behaviour (sic) appear (sic) to be linked with Waikanae Inlet dynamics. As explained in the 2008 Assessment (sic) (Part 1), where such nonlinear behaviour (sic) is demonstrated and not fully understood, the precautionary approach is to use the more recent (erosional) trend." (second bold emphasis added).

Firstly, I do not agree this area has undergone slow erosion at 0.3 m/yr since the 1960s and, as explained below, from when I shifted to the beachfront 27 years ago up until just after the circa 1994 KCDC sand excavation, this part of
the beach experienced unbridled accretion. I believe Dr Shand has identified but ignored the sudden erosion trauma that followed such KCDC excavation – preferring to use a short term trend that took no account of significant accretion right up to 1994 (see Appendix B, pg 2, which shows Dr Shand's own long term trend graphs are at odds with that statement) (also, see Appendix C, pg 2 where J L Lumsden talks of "accretion for many years" prior to 1995) Indeed, the resource application permitting such KCDC sand excavation was only granted because a case of long term annual accretion was conclusively made!

Secondly, the problem with science of this sort (where one might be tempted to avoid reporting on and factoring back the effects of a KCDC-caused problem, when one might to retain KCDC as a future client) is that an equal temptation might be to select a more politically convenient short term trend that, unfortunately, will not necessarily reflect the true overall trend. For example, a longer term period of 50 years or more will show at least a neutral if not net accretion trend if one credits back the KCDC one-off 6,000 m3 sand excavation and the below described collateral effect resulting in lost sand of 10 x the amount excavated (referred to in Appendix C, pg 3) and the ongoing 5,000 m3 per annum storm-water-clearance sand excavations (see Appendix D). To extrapolate only a snapshot trend out to 50 and 100 year points unreasonably magnifies any snap-shot errors and I believe if a 50 year future line is to be projected then, ideally, that should be based on a 50 year historic trend. Otherwise, margins of error in the name of precaution become unquantifiable and the potential for distortion is so great the hazard lines cannot be scientifically supported.

2.3 To background North Paraparum Beach further: despite ongoing natural climate change and anthropogenic (man-made) climate change since the start of the industrial revolution and in the face of the regular KCDC storm-water pipe sand clearance (trucking sand away - which activity was, ironically, a response to the pre-excavation accretion I speak of) and the periodic man-made river interventions causing sediment sink-pits that can temporarily reduce sediment supply, I only ever witnessed significant net annual accretion in front of my property. That was until around 1995.

Circa 1994, KCDC undertook a "trial" intertidal sand excavation of 6,000 m3, and the prior annual net accretion immediately converted to a significant one-off localised erosion event which simultaneously set off a subsequent erosion transferral-dynamic right along Paraparum Beach North - eventually ending at the Waikanae river delta, close to where my home is located.

The post-excavation seabed and dune erosion started directly behind the excavation area while simultaneously an even more dramatic erosion-dynamic commenced to eventually correspond to a total sand loss recorded as approximately ten times the excavation loss (see earlier referred Appendix C, pg 3). This phenomenon and volume of lost sand was graphically recorded in post trial monitoring reports (see Appendix E) on which is shown superimposed for clarity and emphasis the relationship to the sand excavation and renourishment sites. The associated dune toe erosion northwards of profile 17 that I witnessed translated to approx 30 metres shoreward migration of the dune toe.
Not surprisingly, such KCDC sponsored post-excavation report/s attempted to
distance the collateral 65,000 m3 erosion from the KCDC 6000 m3 trial
evacuation, on the basis a linkage was not fully understood. Instead the circa
1995 river mouth management was blamed as the most likely culprit. However,
I believe the immediate erosion transferral mechanism I witnessed along with
the telling (almost exact) correlation between erosion and excavation referred to
in Appendix D and E more or less eliminates the river having much to do with
this sudden event. Further, if one looks at Appendix F, pg 2, a case could be
made that historically, the river cuts in 1989 and 2002 made no tangible
difference, because, shortly after each cut, accretion either continued or
commenced (or at the very least, recommenced between monitoring dates) as
shown by my arrows for additional emphasis. As also can be seen, in the case
of the 1995 river cut, the erosion dynamic (which I have set out in detail below)
was already underway.

Given the first mentioned river cut date (1989) was during a period where net
accretion was the norm, and given sink-pits have a tendency to affect all beach
areas downstream in the direction of littoral drift (rather than be dramatically
localised to coincide exactly with the excavation location and transferral
dynamic below explained and shown on Appendix E), I believe the river-cut
theory is essentially a political cop-out. Indeed, I find the report condensing
given the clear dynamics I observed and recorded at the time – and even more
condescending when I recently confirmed from a quick internet search that it is
widely known by coastal experts that an intertidal sand excavation will have
dramatic lateral effects upstream in the direction that littoral drift currents arrive
from.

Further, Dr Shand’s name is attached to a “Journal of Coastal Research”
technical paper which I found published on the internet suggesting he also is
aware that sand excavations can cause associated wide-spread lateral erosion.

And to further support that transferral effect, from researching submissions
made at the time that KCDC sought their excavation resource consent, it seems
Dr Jeffery Ashby (consulting Geologist) on 5th July 1994 alluded to the
possibility of a northwards lateral erosion consequence in Paraparaumu Beach
North in his submission and I quote “.... but more importantly, to include
monitoring of profiles to the north (Waikanae river mouth area) to investigate if
accelerated depletion occurs in this area....”

I can say with surety, the traumatic erosion dynamic that I observed most
definitely caused an immediate commencement of the transferral and
amplification of the localised erosion caused by the excavation. Any effect that a
river cut would have had (if it was significant or long-lasting enough to be a
factor) was after the excavation and in any event subject to a further lag period
before being noticed as erosion. Whereas, the immediate amplification and
transferral process I witnessed and below describe in detail, began
simultaneous with the sand excavation.

2.4 The sequence of erosion dynamics that I observed were as follows:
Because the excavation site was lower than the surrounding “equilibrium beach
level” the excavation area acted as a vent on the incoming and outgoing tides
for the retained heads of water right up to the raised Waikanae river delta
(trapped bodies of water between both the closest shore sandbar and the beach
and between the two sandbars themselves). These two heads of water were fed for hours by wave after wave slicing over the two sand bars as the tide came in and out. Such sand bars ran parallel to the shore extending through the excavated area right up to the Waikanae river delta.

While suspended sand was always going to gravitate from north to south in the direction of the littoral drift to fill the lower excavated area, the total erosion was amplified markedly through the venting seaward of the particularly long voluminous bodies of water (continually being topped up as explained above). More so on the outgoing tide, a fast rip current was set up for hours at a time by the trapped water venting and this transported a large volume of sand each day seawards from Paraparaumu Beach North. Subsequently, the normal north to south littoral drift transported that sand to the southern Manly Street beach area (again, this can be seen in Appendix E).

However, a further dynamic came into play which was even more destructive for Paraparaumu Beach North and that was caused by the sheer volume, duration and speed of the rip current. During the venting process, water was cutting into and collapsing the northern exposed excavated ends of both sand bars. Each day the north beach sand bars were nibbled away - the process only slowing as the heads of trapped water grew less as the sand bar erosion process got closer and closer to the Waikanae river delta, whereupon eventually the process ran out of steam.

This transferral and amplification of the original excavation erosion to the northern-most end of Paraparaumu Beach manifested as the complete loss of two significant sand bars, a lowered beach profile and a resultant dune face erosion in the act of reaching a new beach equilibrium. Unfortunately, Paraparaumu Beach North then lost the previous wave energy dampening effect of the two sand bars together with the sand reserves therein that previously used to wash up to form a dry beach profile in optimum wave conditions.

I have little doubt this wider one-off erosion is the non-lineal trend that Dr Shand indicates he could not fully understand – which he indicates is the justification that caused him to rely upon a short term trend as a basis for making long term projections.

Yet, relying on my own close empirical observations, this non-lineal erosion could be very well understood. It was quite spontaneous and separate from any episodic river-work (that could potentially cause temporary sink-pits or changed sediment directional flows) and as shown above, their impact is questionable, being more wide spread in downstream effect, often delayed and temporary. This sand bar loss was also alluded to in a KCDC Beach Profile Report (see Appendix G) as was the Dune receding by 20 metres between 1994 and 2001.

3. PROVISIONS AND RESTRICTIONS - UNREASONABLY RESTRICTIVE AND TRAUMATISING

3.1 The hazard lines and associated provisions and restrictions affecting my property would render my interest in land incapable of reasonable use and would place an unfair and unreasonable burden on me and my family.
The relief I seek is that, pursuant to s 85 of the Resource Management Act (RMA), the hazard lines and associated provisions and restrictions affecting my property be removed from the PDP. Because s 85 (1) of the RMA provides that no compensation shall be payable for the effect of a District Plan, it is essential that the PDP is made reasonable. I believe it is entirely unreasonable for KCDC, hiding behind the "no compensation" skirt of the RMA s 85 (1), to impose restrictive Plans that accelerate (well ahead of any direct affects of nature) the otherwise due-course perception or experience of real loss that may impact affected property owners as a result of Climate Change. For KCDC to unnaturally accelerate any such potential or real loss (be it manifested as reduced re-sale value, notations on title, notations on LIM Reports, insurance problems, restrictions to alterations, additions, re-builds and enjoyment and indeed the inability to defend for as long as practically possible) is to rapidly and in a pre-determined way, accelerate the point at which the property becomes worthless. It is akin to a "regulatory taking" under the Public Works Act without fair compensation. And, even if compensation was due under RMA law (as it ought to be in this accelerated loss/handover situation) such Plans, indeed machinations might be a better description, would be akin to ensuring any compensation would be as low as possible. I also believe managed retreat is an extreme green agenda to create a dry beach profile (even in areas where none has existed for many decades) in a way where compensation for indecent haste can be lawfully avoided. If KCDC were to act as a morally responsible commercial body, they might ask what compensation formula might be negotiated to enable all parties to be happy with the green agenda they so fervently desire. Accordingly, I ask that all notion of managed retreat be abandoned in favour of a win/win path forward where the community ultimately gets what it wants but that property owners are not restricted in the name of an early handover unless a suitable negotiated compensation of some sort is put in place – notwithstanding currently inappropriate RMA law has been written with a no-compensation base-line perhaps not fully anticipating the dramatic effect that Plan changes can have when coupled to RSL response.

3.2 I believe KCDC has failed to undertake an adequate assessment as required by section 32 of the Resource Management Act. Given the implications for property owners. A thorough assessment of alternatives, benefits and costs should have been undertaken and it has not been. I ask that a proper section 32 evaluation be done.

3.3 I consider the hazard lines and PDP provisions are contrary to the Resource Management Act 1991 and the New Zealand Coastal Policy Statement 2010. I ask that such lines, provisions and restrictions be removed from the PDP to enable compliance with such documents.

3.4 The hazard lines on the maps are based on a report that is scientifically deficient and inappropriately conservative and precautionary. I ask that because KCDC is not qualified to assess the merits or otherwise of such a single report determining hazard lines, that the associated PDP provisions and restrictions be removed. The fact KCDC has proceeded with undue haste to place untested hazard lines on LIM reports only further supports my belief that KCDC are not expert or independent enough to assess the merits or otherwise of such a single high impact report.
3.5 I don’t believe KCDC has responsibly exercised its statutory duty of care to get the science reasonably right before relying upon it and designing a managed retreat theme to the PDP. Accordingly, with the issues being so critical to so many beachfront and other property owners, I ask that KCDC engage in a consultative process in the first instance with all interested parties allowing a cost effective opportunity for wider participation aimed at reducing the number of contested issues. This is in lieu of KCDC’s immediate reliance upon questionable science forcing all parties to spend a relative fortune resolving issues though more formal and drawn out RMA process. KCDC have so far publically stated they are willing to discuss line positions with ratepayers affording their own experts, case by case, but when I tried to engage KCDC on just that basis – they reneged stating that such engagement would only be entertained AFTER the formal submission stage.

3.6 I don’t believe a managed retreat concept in the PDP is appropriate when no studies have yet been undertaken to assess the cost scenarios of erosion mitigation and private property defence for the next 50 and 100 years (particularly when the current “science” may be unreliable on an area by area basis and deficient in terms of off-setting accretion let alone increased accretion due to sediment supply increase). I ask that provisions and restrictions tied to a managed retreat philosophy be withdrawn from the PDP until the time that a full consultation with affected property owners has been completed (as to both the preferred alternatives and the science).

4. PREFERRED RANGE OF RESPONSE OPTIONS (AREA BY AREA) TO RISING SEA LEVEL (RSL)

4.1 I believe the PDP in its current form effectively imposes, unfairly and unilaterally, an extreme green philosophy of “managed retreat” which is not necessarily appropriate to all parts of the Kapiti Coast where accretion can vary and where built up areas exist at the permit of KCDC. While certain undeveloped areas of the Kapiti Coast (eg Queen Elizabeth Park) might well support/suit a green agenda through managed retreat, such agenda is not necessarily fair or appropriate in the case of built-up areas. RSL response philosophies applied to Queen Elizabeth Park do not encompass the same issues that affect normal ratepayer’s properties which include: family home considerations, people’s health and well-being, investments, livelihoods, aspirations, family futures, personal security plus people’s hopes, dreams and (often) a good proportion of their retirement savings. Accordingly, I ask that even when the hazard line science is made more robust, that KCDC remove all associated provisions and restrictions until such time as KCDC fully consults with those property owners who are most affected (and for whom some contributory cost may apply) in respect of a whole raft of alternative responses to Climate Change and RSL.

4.2 Other RSL response options, mitigations, costs and potential cost sharing arrangements (all in lieu of managed retreat) that should be considered by KCDC and those who are most affected include, but are not limited to:

4.2.1 Beach renourishment. There are many variations and techniques that can be considered, but this option would seem appropriate to all of the
Kapiti Coast. However, in the Southern most areas where “their” sand ends up washed out towards cook straight and with only a rocky coastline south again not reliant on such sand, continually dredging back such lost sand primarily for that part of the beach (or other areas as required) has the advantage of being a never-ending supply of the right grit size.

4.2.2 River works. All river works should be carried out so as to minimise sink-pits and any sand removed from river beds (eg floodplain areas) should be transported down-stream to the active beach system so as not to affect sediment supply to the beach.

4.2.3 Increasing grit size. To the extent increased rainfall doesn’t change the grit size through increased river velocity (with lighter sediment washing away as normal), consideration could be given to renourishment with sand of slightly courser grit size to create a hybrid sand that might “buy” some valuable years as the beach slope angle will become slightly steeper so moving seaward the 50 year projected line positions. Tan B as applied to the (pure of hybrid) hazard report formula will produce a different sea-bed intersect and reduced dune erosion/line position.

4.2.4 Wave energy control. I believe more than any other mitigation technique, this one has the potential to “buy” another 50 to 100 years. In fact if we had sea level rise but at the same time we reduced high wave energy, we could in fact stay as we are today for a very long time. There are numerous methodologies and technologies surfacing all the time - as our RSL concerns are similarly confronted by others world-wide. Naturally, monitoring any downstream littoral current sediment starvation effects and placing/moving the devices accordingly is important, but in our southern areas where only rocky coastline follows, this would be an idea place (south to north) to re-create the beach that has been lost for decades. The range of options are endless but some include:

a) Artificial reefs (solid structures). Surfers and fish like these.
b) Artificial reefs (soft structures). These can resemble vertical flax which bend with the waves providing friction while allowing sediment and marine activity to congregate on an eventually raised natural bar area.
c) Artificial reefs (portable submerged structures). These can be towed from place to place as the need arises.
d) Wave energy absorbing pontoons (floating structures). These can be moved around more easily and taken on shore for maintenance. Some can even generate electricity if placed in high wave energy locations.
e) Wave energy “sausages” (floating and portable). These can be towed around to suit need, be removed at times or even put out only when big storms or tides are looming. They rely on wave dynamics to rotate or move part of the configuration as it passes through – so absorbing wave energy.
f) Sand bar creation followed by oyster bed seeding to provide ground friction that absorbs some of the wave energy.
4.2.5 **Better dune management.** To the extent the beach area is erosion-neutral or accreting, more judicious weed control is required (ie not spraying weeds allowing overspray to widely kill off the painstakingly established Spinifex, as currently occurs with overspray).

Accordingly, I ask that before provisions and restrictions are incorporated into any PDP relating to hazard lines, that a full and open consultation process be initiated in the first instance, with all those who are most affected to consider what options might be the preferred response to RSL as against managed retreat.

5. I AGREE WITH COASTAL RATEPAYERS SUBMISSION

6. **THE PROCESS PRIOR TO PDP NOTIFICATION, AS IT RELATES TO HAZARD LINES AND ASSOCIATED PROVISIONS AND RESTRICTIONS, WAS GROSSLY UNFAIR, UNILATERAL, UNDEMOCRATIC AND DEVOID OF ANY REASONABLE LEVEL OF CONSULTATION FOR SUCH AN IMPORTANT ISSUE.**

6.1 KCDC have a duty of care to ensure that its coastal hazard assessment is correctly based in fact and law. It is inappropriate for the Council to shift the burden onto submitters to seek their own coastal expert to adjust the science and the lines in circumstances where the issues are manifestly erroneous. This situation has been brought to KCDC’s attention and it ought to have triggered reverting to a more reasonable consultation procedure - particularly given the widespread interest, importance and impact associated with this particular PDP. Accordingly, I ask that the PDP process be suspended until a proper, fair and on-the-record consultation process has been given a chance to work, allowing all parties to resolve many issues in a low cost way (before following a strict RMA resolution protocol).

6.2 Further, the Council has given disproportionate and unfair weight to the views of one coastal expert. Accordingly, I ask that a full independent peer review be carried by a suitably qualified overseas peer review entity that has had no prior (or anticipated future) dealings with KCDC other than as may constitute clarifications of the said peer review (access to all the relevant data being provided).
However, the manual also notes that on western coasts (thus including the Kapiti Coast), an increase in sediment supply may also occur as climate change is expected to increase both the episodic and mean annual supply of sediment via rivers and streams (p26). In addition, on western coasts an increase in coastal cliff erosion may further increase the littoral sediment input, the inference being that these changes in sediment supply may retard erosion. Until more quantitative guidance is available as to the effects of climate change on erosional processes, the present (2012) Update Assessment incorporates such uncertainty within the margins of error.

The Guidance Manual 2008 (p38) considered the following methods appropriate for use in an erosion assessment:

- Identification of erosion rates using an empirical approach based on analysis of multi-decadal shoreline data-sets;
- Determination of future acceleration in erosion using a profile-based shoreline translation model, and
- Inclusion of a robust incorporation of uncertainties within the assessment.

Such methods were used CSL’s earlier (2008) erosion hazard assessment and the same methods used in the present Update Assessment.

2.2 New Zealand Coastal Policy Statement 2010

The 1994 New Zealand Coastal Policy Statement (NZCPS, 1994) is a mandatory guide on interpreting the Resource Management Act 1991 as it relates to management of the New Zealand coastal environment. The first revision of the Statement began in 2003 with a proposed version being released in May, 2008 and the final revised version becoming operative in December 2010. Relevant policies relating to erosion hazard assessments are now described, along with how they impact upon, or are dealt with in, the present (2012) Update Assessment.

Policy 24 relates to the **identification of coastal hazards.** Of specific relevance to the present (2012) Update Assessment are the following matters (which are not necessarily mutually exclusive).

1) **Hazard risk shall be assessed over at least a 100 yr timeframe.**
This is being accommodated in the Update Assessment by using both 50 and 100 year prediction period scenarios.

a) **Have regard for the physical drivers and processes which cause coastal change including SLR.**

The 2008 Erosion Assessment describes the region’s geomorphology (landforms and their formative processes), with emphasis on inlets as these are particularly dynamic coastal landforms and a magnet for residential settlement/development. The 2008 Assessment (and
Marine Parade Revetment Erosion Update and Management Programme

A report prepared for the Kapiti Coast District Council

By Dr Roger D Shand

COASTAL SYSTEMS Ltd
Research, Education and Management Consultancy
70 Karaka Street.
Wanganui, New Zealand.
Phone: +64 634 44214 Mobile: +64 21 057 4189
enquiry@coastalsystems.co.nz
www.coastalsystems.co.nz

Client Report 2010-09CRep
© CSL 2010

August, 2010
such shoreline behaviour is necessary and this requires an understanding of the underlying sediment dynamics which are considered further in Section 4.2.

Figure 6 Shoreline behaviour at selected sites around the Kapiti foreland 1942 to 2007. The straight red line superimposed on the time-series graphs defines the overall trend and was determined by linear modelling, while fluctuations of the blue line about the trend line define medium-term shoreline behaviour. See text for interpretation.
COASTAL EROSION

AT

WATER'S EDGE SUBDIVISION

175 MANLY STREET

PARAPARAUMU

INTERIM REPORT

31 May 1999

Prepared by
J L Lumsden
Coastal Management and Engineering Consultant
P O Box 8515
Christchurch
Coastal Erosion
at
Water's Edge Subdivision
175 Manly Street, Paraparaumu

May 1999

1. Introduction

Erosion of the coastline adjacent to a subdivision at 175 Manly Street, Paraparaumu, has placed at risk four houses located along the seaward boundary. The houses at risk in this subdivision, which was created in 1989, have been built much closer to the beach than the neighbouring houses, which are separated from the coast by a substantial esplanade reserve.

Since 1994, Kapiti Coast District Council has been surveying, at least annually, beach cross-sections (profiles) at regular intervals along the Paraparaumu coastline, and on other occasions when a particular event such as a storm has warranted additional surveying. This work has been carried out as part of a coastal monitoring programme, instigated following a beach renourishment trial at Marine Parade, Paraparaumu.

One of the profiles (No 182), set up in 1994, is adjacent to the property at 163 Manly Street, a short distance to the south of the subdivision. Another profile (No 17), adjacent to 202 Manly Street and approximately 180 metres to the north of the subdivision, was originally established by Ministry of Works and Development (MWD) in 1974 as MWD Profile No 11. This profile was also surveyed by Morris and Wilson Ltd during the last off-shore survey in 1981. Monitoring of the beach part of this profile commenced again in December 1996 when it became apparent that on-going erosion was occurring along this part of the Paraparaumu coastline.

A plan of the Paraparaumu coastline (Figure 1) showing the location of the profiles, and copies of Profiles 182 and 17 showing the changes that have occurred, are appended to this report.

Although there seems to be little disagreement that, prior to 1995, this part of the coastline had been generally accreting for many years, it is readily apparent that since that time significant erosion has occurred. The surveys show that since November 1994, the dune face at Profile 182 has retreated some 15 metres at an average rate of around 3.3 metres per year. Similarly, in the period since monitoring of Profile 17 began in December 1996,
the dune face at that location has retreated 10 metres, and this is equivalent to a rate of 4.1 metres per year.

The Water's Edge residents group have claimed that 18-19 metres of dune recession has occurred since 1995, and this is consistent with the higher rate measured at Profile 17. Erosion, of course, tends to occur episodically and average rates can be misleading. Such rates are, however, useful as an indication of what might occur over time in the future if conditions remain the same. Given the proximity of the four houses to the present seaward face of the dunes, it is clear that if the rate of erosion over the last 4-5 years continues, the houses could be uninhabitable within two years, or less if there is a predominance of storm activity. Such predictions should be taken advisedly, however, because no one can be sure what nature might have in store.

Understandably the residents are concerned at the risks they face, including the prospect of losing their houses.

2. Possible Causes

The Water's Edge subdivision lies near the middle of a section of the Paraparaumu coastline at the northern end of Manly Street, approximately 1 km long, that has been eroding at varying rates since 1995. This erosion has been highlighted by the danger to the houses and there has been speculation in the media and elsewhere as to its causes. To some extent this has been fuelled by two events that occurred not long before the time the erosion began to be noticed.

In November 1994, as noted above, a beach renourishment trial was undertaken at Marine Parade, Paraparaumu. The source of the sand was the beach near the middle part of Manly Street and some 6000 m³ was removed from a section of the beach, 600 metres long. The volume removed was intentionally less than the long-term annual rate of accretion along that part of the coast. Although the sand extraction site was just 400-1000 metres to the south of the Water's Edge subdivision, there is no evidence to support the notion that this might be a cause of the erosion at the north end of Manly Street. Paradoxically, of course, some of the eroded sand may very well have ended up on the accreting beach to the south.

Firstly, monitoring of profiles 16, 18 and 181 at the extraction site showed that beach levels were restored within a few months, and for the most part accretion has continued at these locations. Secondly, it is generally accepted that net longshore movement of sediment at Paraparaumu is to the south. Any action such as extraction of sand from the beach to the south of the subdivision is unlikely to have any effect, in the longer term, on the coast further north. Similarly, there is also little evidence to suggest that the clearance of sand from around storm drain outlets further south might be a contributing factor. It is also worth noting that the volume of sand lost from the eroding part of the beach since November 1994 is probably around 65,000 m³, and this is more than 10 times the amount taken during the renourishment project.

The other event of note concerns changes to the mouth of the Waikanae river. Early in 1995, Wellington Regional Council (WRC) realigned the mouth of the river by cutting a more direct channel to the sea through the sandspit. It has been postulated in earlier reports by the author that this action may have altered the longshore drift (from the northern beaches) by-passing regime at the river mouth to the extent that the supply of
Figure 1: Paraparaumu Shoreline Showing Location of Profiles and Water's Edge Subdivision
South of Tikotu Stream

It would be reasonable to expect Profile 131 to behave in a similar fashion to Profiles 10, 11 and 12 in that it has a similar exposure and a flat seabed off-shore. However, Profile 131 has been losing sediment each year since 1996. The overall loss though, since 1994, remains small (3.57 m³/m) because of a large gain during 1996. The loss in the 10 months to March 2000 (24.89 m³/m) was significant when compared to the gains at the Profiles 10, 11 and 12 but tended to occur in the bar area below low tide leaving the upper part of the beach and the dunes much less affected.

During the period, the profiles to the north (141, 142, 144 and 20), which includes the renourishment zone at the south end of Marine Parade, also lost sediment although in much smaller quantities. The upper part of the beach at the southern end of Marine Parade does receive approximately 5,000 m³ of sand per year from periodic clearance of stormwater outlets further north and without this replenishment the losses would presumably have been higher. This practice should continue as long as this source of sand remains available.

Again, changes have tended to occur in the surf zone and the levels in the upper part of the beach remain relatively high, MSL generally lying several metres seaward of its position at the end of the renourishment trial in 1994.

Profile 142 was re-surveyed on 6 June 2000 following unusually high tides accompanied by a storm surge and wave action. Although 2-3 metres was removed from the toe of the dune face leaving a vertical erosion scarp, this activity had very little other effect on the beach profile and there was a small net gain in sediment despite the eroded appearance of the dune.

The question arises as to whether or not Council should add sand to the beach along the southern end of Marine Parade. Council does have a resource consent that allows the transport of sand from inland sources for this purpose and, while this would provide additional security to the roadway, the expense is arguably not justified at the present time. The reasons for this are that there generally remains more sand in the beach than at the end of the renourishment trial, the dune face despite its present appearance has not retreated significantly, MSL remains well seaward of its 1994 position, and Council is regularly monitoring the situation. Furthermore, Council is able to undertake emergency protection work, if necessary, should the road be threatened.

The region between Tikotu Stream and Takutai St (off Manly Street)

For reasons that are not yet fully understood, this zone has undergone consistent and spectacular growth, at least since regular monitoring of the beach began in 1994. During the six-year period MHW has moved seaward up to 62 metres. Until April 1999, the four profiles that cross this region (21, 151, 16 and 18) had been accumulating sand at an average rate of around 30 m³/m per year since 1994 and this is some 2.5 times the average rate of accretion around the Paraparaumu headland recorded during the previous decade.

In the recent period, May 1999 to March 2000, three of the four profiles lost sand, the exception being Profile 151 which maintained its growth record. Whether or not the pattern of growth along this part of the Kapiti coast is coming to an end or not is too early to tell, but if it is, the implications for other parts of the coast, will be watched with
Evaluation of Coastal Monitoring Surveys around the Waikanae River Mouth
Figure 2: Graphical Representation of Movements in MSL at Paraparaumu During Period November 1994 to May 1999

Relative to sand extraction & renourishment zones added for emphasis in display purposes.
Appendix 4: Position of the dune line (RL +1.75m)

* Emphasis added by way circles, arrows & highlighting to show correlation between
 river cuts and the accretion (dune line position) recorded through monitoring.
renourishment trial was finished, despite sand having been removed from this area. Both, the dune area and the seabed below Mean Sea Level, have exhibited considerable movement, with some fairly spectacular gains and losses over the years, and sand volumes have fluctuated accordingly. Actual changes in beach volume were relatively modest (5.0 m3/m2 gained between February 2001 and April 2002 followed by a loss of 4.7 m3/m2 in the subsequent period to February 2003) in the 2-year period to February 2003. Although the profile accumulated a net 17.2 m3/m between December 1996 and February 2003, MSL was 11 metres inshore of its location in December 1996. The gain in beach volume since completion of the renourishment trial was more impressive at 118.4 m3/m. There is a wide (130 metres) section of ‘dry’ beach above high tide level at this profile and it is hard to determine the extent to which losses or gains can be attributed to wind action as distinct from wave-induced erosion.

Profile 18 ~ Through sand supply area (103 Manly St)
Following completion of the renourishment project in November 1994, the beach at this site underwent significant growth over a 2-year period until December 1996. Since that time beach volumes have fluctuated and, by February 2003, 51.7 m3/m had been lost from the profile. Despite this, beach levels have not changed much and Mean Sea Level remained 9 metres seaward of its position in December 1996. In the period between February 2001 and April 2002 the beach gained 3.4 m3/m, and then lost 15.7 m3/m during the subsequent period to February 2003. Some of the profile changes have occurred in the dunes but these are much more evident in the zone below MSL.

Profile 181 ~ North end of sand supply area (131 Manly St)
This profile also lies in an area exhibiting marked changes in beach volume. For example, in the December 1996 to October 1997 period, a gain of 113 m3/m was recorded and this was followed by a loss of 75 m3/m during the following year. Similarly, in the period from February 2001 until April 2002, the volume of sand in the beach cross-section increased by 97.4 m3/m. This was followed by a loss of 35.1 m3/m in the period following between April 2002 and February 2003. Since December 1996, the beach has gained a net 94.3 m3/m and Mean Sea Level was 18 metres seaward of its 1996 position.

Profile 182 ~ 300 metres north of sand supply area (163 Manly St)
This profile is located some 60 metres to the south of the properties in the Water’s Edge development at 175 Manly Street. The profile lies within the area at the north end of Manly Street that has been eroding, interspersed with some periods of modest accretion, since 1994. Losses between 1994 and 2001 were significant, particularly from the upper part of the beach above MSL and the dunes receded around 20 metres in that time. Since then, the beach has experienced more dynamic behaviour that has resulted in some reasonable gains in sediment. Between February 2001 and April 2002, the beach gained 30.7 m3/m and this was followed by a further gain of 40.1 m3/m during the subsequent period to February 2003. By February 2003 the beach volume had recovered to the extent that it contained 3.1 m3/m more sediment than it had in December 1996 and Mean Sea Level had advanced 18 metres during that time. Above MSL beach levels were generally back to 1996 levels although it is noted that the dune face had receded a further 2 metres (approximately) in the 2-year period to February 2003. Among other things, this site is characterised by large-scale changes in the bar area around low tide level and beyond.

Profile 17 ~ Opposite 202 Manly Street
This profile is approximately 150 metres to the north of the boundary of the properties in the Water’s Edge development at 175 Manly Street. Regular monitoring of this profile began with the survey in December 1996. Since then, measured beach losses were fairly consistent (24.1 m3/m, 25.7 m3/m, and 26.1 m3/m respectively) until May 1999. From May 1999 to March 2000, overall beach volume increased by a small amount (1.8 m3/m) and a further small increase (5.4 m3/m) was recorded in the
Clause 8 of Schedule 1, Resource Management Act 1991

Further Submission in support of or in opposition to a submission on the:
Proposed Kapiti Coast District Plan 2012

To: Kapiti Coast District Council

Post:
Kapiti Coast District Council
Attention: Jim Ebenhoh
Private Bag 60601
Paraparaumu 5254

Email: submissions@kapiticoast.govt.nz

Contact Details: Please write in clear CAPITAL letters.

Is this further submission made as an individual(s)? (circle) Yes ☐ No ☐

If this further submission is from an organisation, please state the name of the organisation and your designation:

Title (circle) Mr Mrs Ms Miss Dr

First Name: Don Last Name: Frampton

House Number: 10 Street Name: Nuhaka Place

P.O. Box: 575 Suburb: Paraparaumu

Town: Paraparaumu Post Code: 5254

Email: terson@xtra.co.nz

Phone (Day): Mobile Phone: 0274-401-271

Interest Declaration (required)

I am / we are (circle one of the options below):

a) a person representing a relevant aspect of the public interest; or
b) a person who has an interest in the Proposed District Plan that is greater than the interest the general public has; or
c) the local authority for the relevant area.

If you are relying on a) or b) above, please explain the grounds for saying that you come within this category:

I have a hazard line erroneously placed on my property.

Hearing Details:

Do you want to speak at the hearing in support of your further submission? (circle) Yes ☐ No ☐

If you indicated yes then we will contact you about the timing of the hearings which will begin in mid 2013 following the close of further submissions.

If others make a similar further submission, would you be prepared to consider presenting a joint case? (circle) Yes ☐ No ☐
Notes to person making further submission:

Privacy:

Please note that all further submissions (including names and contact details) will be made publicly available at Council offices and public libraries. A summary of further submissions including the name of the submitter may also be made publicly available and posted on the Kapiti Coast District Council website. Personal information will also be used for administration relating to the subject matter of the submissions, including notifying further submitters of subsequent steps and decisions. All information will be held by the Kapiti Coast District Council, with further submitters having the right to access and correct personal information.

Trade competition:

The Council cannot have regard to trade competition or its effects. Please circle the word(s) in bold text below that apply:

I could / could not gain an advantage in trade competition through this further submission.

If you could gain an advantage in trade competition through this further submission please complete the following:

- I am/am not directly affected by an effect of the subject matter of this further submission that:
 - a) adversely affects the environment; and
 - b) does not relate to trade competition or the effects of trade competition.

Please use the following table for your further submission, attaching any extra sheets as necessary.

<table>
<thead>
<tr>
<th>Name/Organisation:</th>
<th>DON FRAMPTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which submission does this relate to? (Submission number and Submitter's name and address)</td>
<td>685 DON FRAMPTON, PO BOX 575, PARAPARAUMU BEACH.</td>
</tr>
<tr>
<td>Please give details of:</td>
<td>As per the 3-page attachment.</td>
</tr>
<tr>
<td>Support or Oppose?</td>
<td>SUPPORT</td>
</tr>
</tbody>
</table>

Signature ... Date 16-7-13

of person making further submission (or person authorised to sign on behalf of person making further submission). Note: A signature is not required if you make your submission by electronic means.

I have attached 3 pages to this further submission.

Important:

A copy of this further submission must also be sent to the person(s) who made the original submission(s) within five working days of lodging it with Kapiti Coast District Council.
Background

In reading the KCDC Summary of Decisions Requested, it became apparent that the issue of KCDC-caused erosion along Paraparaumu Beach North and the separate and targeted relief I sought in point 2. of my original submission was suppressed rather than given the separate prominence it deserved.

As a consequence, other submitters did not see this issue flagged which denied them the opportunity to be directed towards my submission. This in turn severely restricted the number of submitters who might be inclined to read my submission and discover this manifestly important issue and the specific relief I sought. Obviously, this can adversely affect the number of re-submissions in support.

I contacted KCDC in an attempt to have the summary amended to correct what I saw as a procedural shortfall, but to no avail. The reason given was that: “A supporting point that is not a decision requested does not have to be included in the summary.”

I disagreed that it was merely a supporting point. I believe the separate unique relief I sought for the specific beach area described was justification for summary amendment.

I was also told: “Incorporating a “credit allowance for the erosion effects of all unnatural ... sand excavations seems to be a suggestion as to the methodology that could be used to reassess the hazard lines.”

However, I believe the words; “...seems to be a suggestion...” are irrelevant. The fact is, I sought an explicit and unique relief for an explicit section of the beach and purposely separated this point out from the more general beach-wide line placement issue and remedy. The fact this issue/relief may be inconvenient to KCDC, does not justify making invisible the specific relief I sought by homogenising it into another altogether different relief.

Any methodology that might be used to project hazard lines (eg Dr Shand’s corrected formulae and inclusion of accretion and increasing sediment supply data) is a separate arguable issue which methodology can only produce results worthy of considering when the separate issue of a correct historic beach trend and starting point is first addressed.
Otherwise, any methodology designed to project beach erosion will project a nonsense only a nonsense outcome.

In the end, notwithstanding my best efforts to explain this logic to KCDC and because a): their replies were drawn out to the point time was against any meaningful redress and b): KCDC unilaterally refused to take the matter any further, we had to agree to disagree.

However, these exchanges have shown me the potential for people to misunderstand my intended distinction between the beach-wide methodology behind the hazard line projections vs the unnatural KCDC-caused erosion for which a quite different specific relief is sought in point 2. And, given the two separate reliefs 1 and 2 in my original submission were capable of being homogenised into one single (now confusing) requested decision, I have seen fit to re-submit in support of my original submission to provide better clarity as to the specific nature of the relief then and now sought under item 2 of my original submission.

Accordingly, in support of point 2. of my original submission, I seek:

A. In respect of Paraparaumu Beach North, **conditional upon** the erosion effects of the circa 1994 KCDC sand excavation and the ongoing trucking away of sand relating to stormwater pipe outlets over many years **remaining excluded** from Dr Shand’s Hazard Line “science” methodology *(as is currently the case where his [highly contestable] erosion formulae are applied only to a recent short-term and unrepresentative historic beach history trend that follows the circa 2001-ending KCDC-caused erosion - thereby excluding and ignoring the impact of such earlier unnatural erosion) that** the corresponding 50 and 100 year hazard line positions currently “determined” or as may be “re-determined” in due course for many reasons in circumstances that such exclusion remains, be one-off relocated seawards by no less than the 20 metres erosion-effect recorded at the time (no less than 30 metres as it affects my property) to correct the unnatural and untrue dune toe “starting” position from which the 50 and 100 year future hazard lines are in turn projected;

Or, in the alternative, as the case may become, I seek:
B. In respect of Paraparaumu Beach North, **conditional upon** the erosion effects of the circa 1994 KCDC sand excavation and the ongoing trucking away of sand relating to stormwater pipe outlets over many years **becoming included** in Dr Shand's Hazard Line "science" methodology (not currently the case, but in other words where such KCDC-caused erosion events might become embraced within a much longer and more representative historic beach trend period to which [hopefully less contestable] erosion formulae is applied) **that** any corresponding 50 and 100 year hazard line positions as currently "determined" or as may be "re-determined" in due course for many reasons in circumstances that such inclusion applies, become applicable only when a one-off 20 metres (30 metres as it relates to my property) accretion add-back is factored into such longer term historic beach trend to off-set KCDC-caused erosion and thereby create a natural and true "starting" position from which the 50 and 100 year future hazard lines can in turn be projected.

C. I additionally seek to make clear that reliefs sought in A. or B. above in no way lessen any relief I have already sought including but not limited to the separate matter of rectifying the poor quality and exclusive nature of the beach-wide "science" associated generally with beach-wide hazard line projections.