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Executive Summary 

ES.1 Overview 

The Kāpiti Coast District Council (KCDC) appointed a Panel of Experts to assist them in resolving 
issues raised concerning methodologies and the resulting coastal hazard zones developed in the 
reports by Coastal Systems Ltd (CSL, 2008a, 2008b, 2008c, 2012).  This Panel consisted of the 
following individuals who have experience in undertaking investigations of coastal hazards, and a 
statistician: 

 James Carley, Principal Coastal Engineer, Water Research Laboratory, UNSW, Australia 

 Dr Paul Komar, Emeritus Professor of Oceanography, Oregon State University, USA 

 Dr Paul Kench: Professor and Head of Department, School of Environment, University of 
Auckland, NZ 

 Dr Robert Davies, Statistician, Statistics Research Associates Limited, Wellington NZ. 

The Panel attended a Workshop on the Kāpiti Coast from 2 to 6 December 2013, with the first 
day spent on a field excursion along the coast, to acquire a first-hand familiarity with its 
environments, property development, and potential erosion problems. The following two days 
were dedicated to attending meetings with residents, other stakeholders, and with technical 
experts and Council staff.  Subsequent to that meeting, the Panel concentrated on reviewing the 
CSL reports, and others related to the Kāpiti Coast hazards to determine the availability of data 
sets that document this coast’s waves, tides, storm-induced surges, and evaluations of the rate 
of rising sea levels, processes that are important to sound, scientifically-based assessments of 
coastal erosion and flooding hazards.  Also important to the Panel’s review were the written 
comments by stakeholders and technical experts, provided to the Panel at the time of the 
Workshop, and their comments offered later in review of the first draft of this report.  All of 
these materials were read by each of the Panel members, and received careful consideration in 
forming our opinions. 
 
While each Panel member was responsible for writing separate sections of this report, this final 
draft sets out our collective opinion, all members being in agreement with the findings and 
recommendations.  
 
It was during this review of the materials that the Panel decided to also consider the report by 
Lumsden (2003), who had earlier undertaken hazard assessments for KCDC.  The significance of 
its inclusion is that John Lumsden is a coastal engineer and provided process-based analyses and 
hazard assessments, in contrast to those by CSL competed by Dr Roger Shand, a coastal 
geologist/geographer who had followed different methodologies, having focused on 
documentations of the changing positions of the Kāpiti shorelines, the long-term trends of 
erosion or accretion. 
 
Based on its review, it is the opinion of this Panel that the hazard lines recommended by CSL are 
not sufficiently robust to be incorporated into the Proposed District Plan, and those completed by 
Lumsden in 2003 need to be updated to account for more recent analyses of the ocean 
processes, in particular the higher rates of rising sea levels that are now projected by 
climatologists. With the results of their analyses having complimented one another, respectively 
having focused on the long-term trends of rising sea levels and the progressive erosion of the 
Kāpiti shores, and the short-term destructive impacts of extreme-storm events, it is this Panel’s 
recommendation that these contributions by both should be considered by KCDC in the 
development of more robust hazard lines to be included in their District Plan. 
  



ES.2 Coastal Hazard Zones 

Important to the development of hazard zones on the coasts of New Zealand are the guidelines 
contained within the New Zealand Coastal Policy Statement 2010 (NZCPS, 2010).  In particular, 
Policy 24 provides a list of the risks that should be assessed “…over at least 100 years”, 
including: 
 

 the physical drivers and processes that result in coastal change, including sea-level rise; 

 short-term and long-term natural dynamic fluctuations of erosion and accretion; 

 the cumulative effects of sea level rise, and the wave heights and surge levels under 
episodic storm conditions; and 

 the effects of climate change on the above, taking into account the best available 
information on the likely effects of climate change on the region or district. 

 
Evident in this list is the recognition of the importance of short-term hazards produced by 
extreme storms that could happen this year or at any time in the future, and also the long-term 
progressively enhanced hazards due to rising sea levels, both having climate controls.  These 
individual hazards are components in the standardised methodology developed by Dr Jeremy 
Gibb, which has seen widespread applications including in the CSL and Lumsden reports for the 
Kāpiti Coast.  As formulated by Gibb, the resulting hazard zone distance is the summation of the 
following components, each contributing a distance to the dune and property erosion/recession:  
 

 Short term storm erosion produced by extremes in wave heights and tides elevated by a 
storm surge; 

 Dune stability, the additional retreat of the dune’s scarp following the episode of storm 
erosion; 

 Long term trends of coastal change (due to the sediment budget, the sand sources and 
losses); 

 Recession due to sea level rise, based on projected future levels; and 

 A factor of safety to account for the uncertainties in the analyses. 

 

These factors were included by CSL (2008a, 2012c, 2012) in their analyses of the Open Coast 
hazards, with the addition of other factors when analysing the environmental hazards within 
river inlets (CSL, 2008b, 2012).  Although the report by Lumsden (2003) included assessments 
of the impacts by the long-term rise in sea levels, of particular interest is his analyses of the 
short term, storm-induced impacts, in which he followed a process-based methodology, 
accounting for the combined effects of extremes in the storms wave heights and elevated tides 
due to its generated surge.  Due to the importance of these factors, each has been reviewed in 
detail in this report, with summaries provided here for the long-term and short-term processes, 
and the methodologies applied in the CSL and Lumsden reports. 

ES.3 Sea-Level Rise, Sediment Budgets, and Long-Term Changes in 
Kāpiti Shorelines 

The Panel concluded in its review that the primary contribution in the CSL (2008a, 2012) 
open coast hazard assessments was their analysis of the long-term changes in locations of the 
shoreline positions, based on series of aerial photographs available since the 1940s, and old 
maps dating back some 135 years.  Their analyses involved a detailed programme to cover the 
extent of this coast’s 38-kilometre length of shore, the coverage including 68 analysis sites, 12 
representing environmental-specific analyses for river inlets.   
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Unfortunately, CSL did not undertake analyses to isolate the causes, to remove the portion of 
the change due to the rise in sea levels, which would identify the portion due to the balance in 
the sediment budget that is primarily responsible for the site’s accretion or recession.  An 
important consequence of not having removed the contribution by the 20th century rise in sea 
level is that ultimately in calculating the future hazard lines they “double counted” the effects of  
the rise in the relative sea level, in that separate analyses were also undertaken on the changes 
in sea levels projected for time frames of 50- and 100-years, entered as a separate factor in 
Gibb’s equation.  To avoid this duplication, the  preferred approach would have been to remove 
the contribution of the 20th century rise in sea level from the analysed trend of shoreline change, 
leaving only the portion that resulted from the gain of beach sand acquired from it sources, or its 
losses, the balance in that site’s sediment budget, available for additional analyses. 
 
In view of its importance, the Panel recommends that KCDC undertake analyses of beach-
sediment budgets, in order to determine the gains and losses of the beach sand that account for 
the shoreline changes found in the CSL time series, and in the programme of beach-profile 
surveys (Lumsden, 2013). The quantification of the sediment budget should permit an 
assessment of whether the accretion of Kāpiti’s central cuspate shore will revert to erosion in the 
near future, the positive balance in the budget being exceeded by future accelerated rates of 
rising sea levels.  It is also important that investigations be undertaken of the rivers, the 
dominant sources of the beach sand, including considerations to determine how climate change 
or human impacts (e.g. sediment mining) could alter them, resulting in reduced volumes of sand 
being contributed to the Kāpiti beaches. 

ES.4 Extreme Storm Events and Short-Term Erosion Hazards 

By “short-term”, the inference is that the hazard being considered could represent an immediate 
threat to the erosion of ocean-front properties, most clearly represented by the episodic 
occurrence of an extreme-storm event that might last for only a few hours or days.  Of 
importance, however, it also denotes a hazard that could happen this year, or at any time in the 
next 100 years.  In that respect, occurrences of extreme storms represent the most significant 
component in hazard assessments.  While the rise in sea level is important, if it were to act 
alone, during the span of this century it would slowly flood over the inland properties, while their 
actual destruction would be produced by future storms, the zone of impacts by storm waves and 
tides being elevated by the rising water levels, and moving inland over additional properties. 
 
It is in the analyses of such short-term hazards that the methodologies of CSL (2008a, 2008b 
2012) and Lumsden (2003) differ the most.  CSL follows an approach that expands their 
analyses of the historic trends of change in shoreline positions over the decades to include a 
focus on the variations in shoreline positions above and below the regression line that 
determined the long-term hazards. In contrast, the Lumsden (2003) analysis is based on the 
ocean processes, the waves and tides, their extreme combinations when exceptionally high tides 
combined with the occurrence of a storm and its extreme waves. 
 
While the “residuals” and the resulting “fluctuations”  determined by CSL in the time series of 
shoreline distances are of interest and worthy of analysis, it is necessary to understand the 
ocean processes and beach responses that are responsible for their occurrences.  However, this 
was not attempted in the CSL analyses of the short-term hazards for the Kāpiti Coast, not 
having included any analyses of the available data sets for the waves and tides that actually 
represent the short-term hazards.  Furthermore, it is clear that the recorded residuals and 
fluctuations are not responses to extreme, rare storm events that pose the greatest hazards. 
Accordingly, the conclusion of this Panel is that the CSL assessments of the short-term hazards 
cannot be viewed as being robust, that it does not sufficiently represent the extreme conditions 
necessary to account for present-day and future erosion and flooding hazards. 
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ES.5 Inlets 

Complex and less well understood processes occur around coastal inlets.  The Panel supports the 
separate consideration of inlets in the hazard assessment. 
 
The Panel endorsed the use of the CSL inlet approach, though refinements in application would 
be useful in future iterations to:  

 Allow probabilistic analysis of shoreline positions within the envelope of change; and 

 Evaluate alongshore variations in inlet location. 

Along with revised open coast assessments, scenarios of change under accretionary coast 
conditions should be considered.  Both managed and unmanaged inlet scenarios should be 
evaluated – the purpose of this evaluation would be to inform stakeholders of the consequences 
of an unmanaged scenario. 
 
How the inlet and open coast hazard zones are merged should be reconsidered and a 
transparent procedure invoked. 
 
Given the long history of hard and soft inlet management, the unmanaged scenario should not 
become the default without further stakeholder consultation, as well as social, environmental 
and economic assessment. 

ES.6 The Kāpiti Coast Hazard Lines — Recommendations 

While it has been the conclusion of this Panel that the hazard lines proposed by CSL in 2008 and 
updated in 2012 are not sufficiently robust for incorporation into the Proposed District Plan, and 
those completed earlier in 2003 by Lumsden need to be updated, it is recognized that both 
investigations completed quality analyses that are important components of the Kāpiti Coast’s 
erosion hazards, that when revised could yield best practice hazard lines for its coast.  In 
summary, included in our recommended revisions and additional investigations are the 
following: 
 

 That the time series of shoreline changes derived by CSL for the 68 sites along the Kapiti 
Coast be analysed to separate the respective contributions produced by sea-level rise during 
the 20th century, and that produced by gains and losses of beach sand at that site, its 
sediment budget, eliminating the “double counting” of the rise in sea level from the 
projected 50- and 100-year hazard zones.  

 Undertake analyses of beach-sediment budgets to determine the gains and losses of the 
beach sand that should account for the shoreline changes found in the CSL determinations, 
including particular attention given to the rivers, the principal source of the beach sand, and 
how global warming or human environmental impacts could change the volumes of sand 
being contributed to the Kāpiti beaches. 

 Compare the sediment budget analyses with the projected rates of rising sea levels to assess 
if and when the accretion of its central cuspate shore might revert to erosion and eventually 
disappear, exposing the properties along that shore to storm impacts.  

 The analyses by Lumsden (2003) be updated to include the additional wave hindcast data 
available from the MetOcean reports, and the increased sea levels that are now projected by 
climatologists, with the revised results used for the short-term factor in the Kapiti Coast’s 
hazard lines, replacing CSL’s “fluctuation” values. 

 
With the combined contribution from the Lumsden processes-based analyses of short-term 
hazards resulting from extreme storm events, with those from CSL that documented the long-
term trends of changing shoreline positions, the Kāpiti Coast District Council would obtain the 
desired robust erosion hazard zones, in which both the engineering and geologic aspects have 
been accounted for, in effect “the best of both worlds”. 



ES.7 Need for Coastal Management 
 
The study of coastal processes and the determination of coastal hazards is of fundamental 
academic interest, however, it is generally only of concern to local government and communities 
when present or future coastal hazards potentially impact the built environment.   
 
Although coastal management was not explicitly part of the Panel’s Terms of Reference, a 
substantial number of submissions related to risk assessment and coastal management.   
 
The assessment of coastal hazard zones should consider a range of plausible scenarios (e.g. low, 
mid, high, or best estimate and extremes).  The range of scenarios (particularly for 100 years’ 
time) should be considered in future planning, but automatic retreat of development behind the 
projections for the most extreme scenario should not be a default management plan. 
 
In the formulation of planning policies for coastal hazard management, a full range of 
management options needs to be considered in conjunction with stakeholders, and include 
policy, economic, environmental, cultural and social factors.  Noting that the definition of risk is 
likelihood times consequence, risk may therefore be managed by changing either the likelihood 
or the consequence. 
 
In short, this management may consider combinations of the following options in increasing 
order of strength (of intervention): 

 No action; 

 Retreat and relocation; 

 Accommodation (optimising the coexistence of the built environment and natural processes); 
and 

 Protection through: 

o Soft engineering (such as beach nourishment); 

o Hard engineering (such as seawalls). 
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inlets, its ocean-front properties, and to become familiar with the range of shore-protection 
structures constructed to defend those properties.  The following two days of the Workshop were 
devoted to first meeting with residents and stakeholders of the Kāpiti Coast, listening to their 
presentations and with their having provided us with written statements2.  The following day we 
met with technical experts (listed in Appendix C), including the primary author of the CSL 
reports (Dr Shand), time well spent in providing useful exchanges of opinions and suggestions 
for improving the hazard-zone assessments.  A number of technical reports from a variety of 
sources were also provided to the Panel and made available to all participants in the December 
meetings via the Council website.  These contained important background information 
concerning the processes that are responsible for the hazards (waves, tides, etc.).  The final day 
of this Workshop was devoted to internal discussions by the Panel members, covering the 
information that had been presented to us, and concerning organisational matters to be followed 
in preparing our review report for the KCDC. 
 
The task faced by the Panel proved to be daunting, with the CSL and Lumsden reports being 
both voluminous and detailed in their contents.  To this was added the materials provided by 
Workshop participants, and we also found it necessary to read and absorb as much as possible 
from past reports concerned with the Kāpiti Coast’s erosion processes and hazards.  The first 
draft of this report was completed in March 2014, having been prepared in haste.  That draft was 
submitted to KCDC by the Panel Chair, James Carley, who made oral presentations to KCDC and 
at two public forums3, summarising our findings and responding to questions.  The next day he 
similarly met with homeowners, at which time they were provided with copies of the report.  This 
was followed by a period of time during which the stakeholders and technical experts could 
submit written comments about our March draft, with the Panel considering these submissions in 
finalising their report. 
 
In the interim, while waiting for those comments we had additional time to go through the 
reports and materials that had been provided to us earlier at the Workshop, and then to review 
the wide-ranging comments, suggestions and criticisms offered by the 21 reviewers of the March 
draft.  The present report is the product of the Panel’s deliberations, having considered the 
results of the coastal hazard investigations undertaken thus far by CSL and Lumsden, and the 
input provided by stakeholders and technical experts.  As directed by KCDC, this report focuses 
on the scientific validity of the methodologies and resulting hazard-zone assessments followed in 
those reports, confined to the erosion and recession hazards. The inundation and tsunami 
hazards are being assessed in separate studies, and therefore are beyond the scope of this 
Panel.   
 
It is the opinion of this Panel that the respective investigations by Lumsden and CSL complement 
one another in having followed different methodologies, the Lumsden study having included 
analyses of the ocean processes important to hazards from extreme storm events, while those 
by CSL include analyses that document the long-term trends of shoreline change and their 
projected future hazards.  It is important to consider the results of both studies, supporting 
decisions by KCDC directed toward the establishment of sound, scientifically-based coastal 
erosion hazard zones. 
 

                                                 
2 Copies of written statements and other materials submitted by the homeowners and technical experts were 
provided to and read by each of the Panel members. 
3 At which time the draft report was publicly released. 
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 FINAL 4 

intensities, being important respectively in long-term enhanced hazards and episodic extremes 
of erosion and inundation events. 
 

2.1 Rising Sea Levels: Rates and Future Projections  

The inception of significant degrees of global warming and its effects on the environment can be 
traced back to the late 19th century, the period of rapid industrialisation, with the most obvious 
environmental consequence being the global rise in sea levels measured by tide gauges 
throughout the world.  This history of changing globally-averaged sea levels from 1800 to 2010 
is shown by the graph in Figure 1.  The thick black line represents the approximate average rise 
during the early 19th century, based on a variety of environmental evidence such as tree rings 
and coral reef growth (termed “proxy sea levels”), transitioning to the red line that is based on 
world-wide measurements by tide gauges, with the average rate of rise spanning the 20th 
century having been about 1.7 mm/year, but more meaningful to coastal hazards the average 
rate has been about 2.0 mm/year since 1930.  The short green line is derived from satellite 
altimetry sea-level measurements that began in 1993, which covers the entire extent of the 
ocean but can be integrated to yield the global averages graphed in Figure 1.  There is good 
agreement between the tide-gauge and satellite measurements from 1993 to 2010, indicating 
that the rate of rise has been of the order of 3.3 ± 0.4 mm/year, suggestive of there being an 
acceleration in the rate of rising sea levels, that rate being greater than 2.0 mm/year 
experienced during the 20th century.  While the concave-up curvature of the 19th century proxy 
data plus the tide-gauge and satellite measurements indicates that there has been an overall 
acceleration in the rate of sea-level rise spanning those 200 years, debate exists as to the 
occurrence of an acceleration when considering the tide-gauge data alone for the 20th century. 
This uncertainty mainly results from the variations in the annual-average sea levels produced by 
multiple natural and human-induced environmental effects, for example major volcanic eruptions 
that temporarily produce global cooling due to their emissions of aerosols, the similar effects of 
air pollution caused by humans, and variations associated with the annual to decadal climate 
changes that include El Niños and La Niñas.  
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While the trends of globally-averaged measured sea levels and their future projections are of 
immense interest, as are their climate controls, of more immediate significance to the hazards 
faced by specific coasts is their local trend in the “relative sea level”, which includes the direction 
and rate of change in its land elevations, combining with the increase in the global ocean-water 
levels.  It is this trend in the relative sea level that can be derived directly from tide-gauge 
records, by computing the annual averages of the gauge’s hourly measurements through the 
year, and tracking its changes over the years to derive a trend, a rate of change that could 
either be greater or less than found for the global average, depending on the subsidence or uplift 
of the coast.  This difference can be significant in tectonically active regions such as New 
Zealand, due to the collision and subduction of Earth’s tectonic plates.  For the North Island and 
the Kāpiti Coast this collision is between the Pacific plate to the east and the Australian plate to 
the west, with subduction of the Pacific plate occurring along the Hikurangi Margin that extends 
the length of the east coast (Wallace, et al., 2009). 
 
Important to hazard assessments for the Kāpiti Coast is the close proximity of the tide gauge in 
Wellington Harbour, its record having received detailed analyses by Bell and Hannah (2012).  Its 
measurements of the tides extend back to the late 1800s, initially recorded in the form of annual 
mean sea levels up to the 1940s, with monthly-mean sea levels available from 1944 to the 
present, yielding the analysis in Figure 2 from their study, the linear regression spanning the 
century up to 2010 showing a trend of 2.30 ± 0.15 mm/year.  With this long-term rate of rise in 
the relative mean sea level being greater than the global average rate (Figure 1), the indication 
is that this coast has experienced subsidence, of the order of 0.3 mm/year.  Subsidence along 
this coast is expected from the Pacific and Australian plates being “locked” on their subduction 
interface, storing tectonic energy, not having been released by occurrences of major subduction 
earthquakes during historic times.  Subsidence of this shore and all along the east coast of the 
North Island is also demonstrated by GPS units that have measured land-elevation changes for 
about a decade (Beavan and Litchfield, 2009).  As analysed by Bell and Hannah (2012), a GPS 
unit located near the Wellington tide gauge shows a subsidence rate of about 1.7 mm/year since 
2000, a localised higher rate of subsidence of the land that is attributed to “slow-slip” tectonic 
movements on the subduction interface, a gradual slip that does not generate a strong 
earthquake, having been identified by seismologists (Wallace and Beavan, 2010).  Similar GPS 
measurements on the Kāpiti Coast show a smaller subsidence rate of 1 mm/year. 
 
The annual-average sea levels graphed in Figure 2 demonstrate a degree of variation that is 
fairly typical of such analyses, the origin of which for the Wellington record has been 
investigated by Bell and Hannah (2012).  These anomalies above and below the linear regression 
line were found to vary between -0.16 and +0.17 metre, a range of 0.33 metre.  The lowest 
level occurred during August 1977, coinciding with a strong El Niño; the highest in October 1989 
occurred during the strong 1988-89 La Niña.  Correlations were found with the Southern 
Oscillation Index (SOI), which provides a measure of the range of intensities between those 
climate events.  The higher than normal mean sea levels at Wellington during La Niñas are 
attributed to warmer coastal and ocean water temperatures, resulting in its thermal expansion, 
plus a general set-up of the water levels in the western Pacific produced by a strengthening of 
the easterly Trade Winds.  The opposite occurs during El Niños, with the colder water 
temperatures and increased densities lowering the Wellington water levels. 
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subsidence between Kāpiti and Wellington should be accounted for, and if available, include later 
modifications by climatologists of projections for the future global sea levels.  
 

2.2 Increasing Storm Intensities and Wave Heights 

In addition to rising sea levels due to global warming, in recent decades Earth’s changing climate 
appears to have also produced an intensification of storms in some regions, which have 
generated more extreme waves contributing to enhanced coastal impacts.  However, just as in 
the case of future sea levels, debate exists amongst climatologists and coastal scientists 
regarding future increases in storm intensities and trends of increasing storm wave heights, 
projected through the 21st century.  However, sufficient documentation exists for there having 
been an increase in both storm intensities and wave heights over significant areas of the world’s 
oceans, based on measurements from wave buoys and satellites, that potentially should be 
considered in assessments of future coastal hazards, even though projected magnitudes are 
uncertain. 
 
Global climate models applied to investigate environmental changes in response to global 
warming indicate that the intensities of storms may be expected to regionally increase, with the 
model projections to a degree having been confirmed by measured wind speeds and atmospheric 
pressures within both tropical storms (cyclones, typhoons and hurricanes) and extra-tropical 
storms at higher latitudes. The expectation, therefore, is that the heights and periods of the 
waves generated by those storms would also have increased during the 20th century, and 
potentially could continue to increase in the future, leading to greater coastal impacts. 
 
An increase in wave heights has been documented by long-term measurements in the North 
Atlantic, collected since the 1960s using a recorder mounted on the Seven Stones Lightship 
located off the southwest coast of England, yielding the earliest and longest record of wave 
climates; its record was the first to demonstrate a statistically significant trend in the annually-
averaged significant wave heights, defined as the average of the highest one-third of the hourly 
measured wave heights (Carter and Draper, 1988; Bacon and Carter, 1991).  Wave-height 
increases have similarly been found in the Northeast Pacific, in measurements from several 
buoys along the US west coast (Allan and Komar, 2000, 2006), showing that the rate of increase 
has been greatest at the higher latitudes of the Pacific Northwest, the coasts of Washington and 
Oregon, whereas on the shores of southern California the waves have been most extreme during 
major El Niños due to the southward shift of storm tracks during that climate event. The 
increase in the wave heights measured by a buoy off the Pacific Northwest is shown in Figure 3, 
representing a series of graphs for the annual averages of the hourly-measured significant wave 
heights.  The top-most graph is a plot of the annual averages for the entire year, with the 
regression yielding a rate of increase of 0.018 m/year, while the remaining series of graphs 
represent progressively more extreme storms and assessments of the wave heights.  The second 
plot is for the averages of the measured significant wave heights during the “winter” (October 
through March), being most relevant to coastal impacts since erosion events are largely confined 
to that season; the rate of increase has been 0.032 m/year (an increase of 0.8 metres in 
25 years), substantially greater than for the annual averages.  The third and fourth graphs are 
respectively the annual averages of the 5 highest recorded wave events experienced each 
winter, the rate of increase having jumped to 0.095 m/year, while the highest measured 
significant wave height each winter yielded a rate of increase of 0.108 m/year (2.7 metres in 25 
years).  Therefore, in analyses of waves generated by extratropical storms in the North Pacific, it 
has been possible to demonstrate that the highest generated waves have substantially increased 
with time, a high rate of increase that is also displayed by the statistically projected 25- through 
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One submitter (Simon Arnold, April 2014) commenting on the March draft of our report noted 
that while Young et al. (2011) had documented an increase in the extreme 99th percentile 
significant wave heights, Figure 4, the trends in the mean significant wave heights remained 
close to zero, suggesting that there has not been a climate-induced increase.  The data itself, 
however, show that the annual means in the Northeast Pacific off the west coast of the United 
State and at high latitudes in the Southern Hemisphere showed rates of increase predominantly 
being about 0.25%, increasing to on the range 0.25 to 0.50% for the 90th percentile, and then 
as seen in Figure 4 achieving an increase of about 1% per year for the 99th percentile.  
Important, the satellite measurements of the wind speeds follow this same trend of increase for 
their rates, the percentage rates being greater than those for the wave heights, and with most 
being statistically significant.  These patterns of change in the satellite measurements of the 
winds and waves correspond to and agree with those seen in Figure 4 for the buoy wave data 
measured off the coast of the US Pacific Northwest — the rates of increase of both the winds and 
generated wave heights increase as progressively higher extremes are analysed, this being 
expected for their skewed distributions of magnitudes, and of obvious importance to coastal 
hazard assessments since it is these extremes in storm winds, storm surges and generated wave 
heights that are important to the episodic erosion and flooding of coasts. 
 
There is reasonably compelling evidence for potential increases in both storm intensities and 
their generated wave heights, with the rates of increase in their magnitudes posing enhanced 
hazards to the ocean’s shores.  It is recognised that there have been few analyses of long-term 
buoy records to document this increase, and that satellite measurements of storm winds and 
wave heights are limited to only two decades, with the magnitudes of their rates of increase 
therefore being uncertain.  The global satellite data show regional differences, with the higher 
rates of increasing storm intensities and extremes in the wave heights occurring at high 
latitudes, encompassing the ocean shores of New Zealand.  Uncertainties remain as to the 
climate controls on extratropical storms that dominate those higher latitudes, with research by 
climatologists predominantly attributing the increases to global warming.  Furthermore, it has 
been suggested that the increased storm intensities in the North Pacific have been produced by 
“black carbon” aerosols emitted by power plants and factories in China and India.  Therefore, the 
connection of storminess with global warming is less certain than rising sea levels being caused 
by global warming; specifically, the melting of glaciers and return of the water to the oceans, 
and the thermal expansion of the ocean’s waters representing the most important processes.   
While there have been analyses of wave climates for Cook Strait and the shores of the Kāpiti 
Coast based on hindcast analyses (Laing et al., 2000; MetOceans, 2007, 2010), those 
investigations did not include examinations of a possible increase over the decades, and likely 
would have been unsuccessful given the limited accuracies of hindcasts.  The isolation of the 
Kāpiti Coast within the confines of the Strait likely decreases the probability of their being 
increasing locally-generated wave heights, but there is the possibility for storm waves arriving 
from the Tasman Sea to produce an increase along the Kāpiti Coast, the satellite data having 
shown a significant rate of increase in the Tasman Sea (Figure 4).  
 
It is plausible that there will be an increase in wave heights along the Kāpiti shores in the future, 
enhancing the impacts of storm events, but there are uncertainties in the research completed 
thus far by climatologists and marine scientists, and there is not at present a clear direction to 
be followed in providing an analysis of the potential hazards faced on the Kāpiti Coast.  It is clear 
that the global measurements being obtained from satellites will be important to this 
assessment, but with there being only two decades of measurements thus far, it becomes a case 
of “wait and see” until a longer data set becomes available, but that would likely require multiple 
decades of additional measurements.   
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Until longer term data sets become available to assess whether storm-generated wave heights 
are increasing, globally and within the Cook Strait, it would be informative to expand the already 
completed wave climate analyses of Laing et al. (2000) and MetOceans (2007, 2008) to include 
more detailed analyses of the heights of waves that reach the Kāpiti shores from the Tasman 
Sea.  Of interest would be to derive at least an order-of-magnitude estimate of increase over the 
next 25 to 50 years, permitting a comparison with the expected impacts from projected rising 
sea levels. Such model-generated estimates of the wave-height increases should not, however, 
be included at this stage in the hazard-zone assessments, but potentially could be in the future 
after there is greater certainty in the documented trends of storm intensities and of their 
generated waves, and a better understanding of the climate controls. 
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In addition, Policy 22: Sedimentation includes “Assess and monitor sedimentation levels and 
impacts on the coastal environment”, and Policy 27(2) states that in evaluating options 
under (1): 

a. focus on approaches to risk management that reduce the need for hard 
protection structures and similar engineering interventions; 

b. take into account the nature of the coastal hazard risk and how it might 
change over at least a 100-year timeframe, including the expected effects of 
climate change; and 

c. evaluate the likely costs and benefits of any proposed coastal hazard risk 
reduction options. 

 
The recommendations made in NZCPS 2010 are what one should expect in analyses of coastal 
hazards (excluding tsunami) on any coast, not just New Zealand.  However, as will become 
evident in the reviews in Sections 4 and 5 of the Lumsden (2003) and CSL (2008a, 2008b, 
2008c, 2012) reports, individually they did not include considerations of all of these processes 
and factors that govern the hazards, but when considered together with their respective 
contributions they come close to meeting these recommended goals, with a couple of omissions 
(e.g., analyses of the beach sediment budget).  In terms of our review, it should be noted that 
while the NZCPS 2010 identifies the important hazards, it does not specify the methodologies 
that could or should be applied in undertaking their analysis, this wisely having been left to the 
coastal scientist or engineer who is undertaking the investigation. While having kept in mind the 
recommendations offered by NZCPS 2010, the main focus in our review of the Lumsden and CSL 
reports has been directed toward the technical methodologies they applied, their scientific 
validity and the resulting hazard zones they proposed. 
 

3.2 Processes and Factors Important to Coastal Hazards 

The NZCPS 2010 guidelines include mention of multiple processes and factors that need to be 
accounted for in coastal-hazard assessments — the waves and surge levels of elevated tides 
during major storm events, the effects of rising sea levels, the sediment “levels” on the beaches 
and in the dunes, and the natural “dynamic fluctuations” of the beaches over the short and long 
term.  The analyses of coastal hazard zones, their quantification, therefore require long-term 
data sets for the waves and tides, and surveys of the beach morphology over a sufficiently long 
period of time that both its dynamic responses to individual storms and the net long-term rate of 
shoreline recession or accretion can be determined.  Furthermore, efforts need to be directed 
toward evaluations of what is termed the “budget of beach sediments”, which includes 
assessments of the volumes of beach sediments acquired annually from their sources (e.g., 
rivers), and their possible losses (e.g., the transport of the sand offshore or alongshore).  All of 
these processes and factors need to be considered in terms of their variations and possible 
trends produced by Earth’s changing climate. 
 
The determination of a hazard zone for a particular stretch of coast represents a challenge to the 
coastal scientist or engineer, in that it requires data sets (measured, modelled, or estimated) for 
the waves and tides, with it being necessary to account for the extremes in those processes that 
are responsible for occurrences of erosion or flooding.  It also requires a documentation of the 
long-term net trend of changing shoreline positions, and its causes in terms of the sources and 
losses of beach sediments, yielding a balance in the beach-sand budget that accounts for the net 
surveyed trend of shoreline recession or accretion. 
 
The availability and analysis of tide data applicable to assessments of the Kāpiti Coast hazards 
were reviewed in Section 2, there being more than 100 years of measurements derived from the 
Wellington tide gauge, which have been analysed in detail by Bell and Hannah (2012).  The 
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results of their analyses yielded a rate for the long-term trend of sea-level rise along this coast, 
locally affected by tectonic-induced subsidence of the land. They also undertook analyses of the 
variations in the annual average sea levels above and below that net trend, concluding that they 
are produced in part by climate variations, the Interdecadal Pacific Oscillation (IPO) cycle that 
represents alternating 20- to 25-year periods dominated by La Niñas that elevate the measured 
tides, versus El Niños that lower water levels.  Both the trend and variations in the sea levels 
measured by the Wellington tide gauge are directly applicable to the Kāpiti Coast, with a minor 
adjustment apparently needed to account for its lower rate of subsidence of the land compared 
with Wellington. 
 
An earlier study by NIWA (Laing et al., 2000), commissioned by Lumsden (2003) to provide 
assessments of waves and tides required in his hazard assessments, included analyses of the 
predicted astronomical tides for the Kāpiti Coast, and also the potential magnitudes of storm 
surges that could elevate water levels above those predicted tides. The predicted astronomical 
tides were analysed using standard models, the results showing that there are significant along-
coast variations in the elevations and ranges of the tides, an important variation that needs to 
be taken into account in the hazard-zone assessments.  Storm surge elevations during past 
major storms were evaluated from barometric pressure measurements at the Paraparaumu 
Airport, the highest 0.7-metre surge having been found for the September 1976 storm, when 
the hindcast deep-water significant wave height had reached 3.6 metres, and the accompanying 
calculated wave run-up was 2.6 metres above the tide levels.  The most severe storm impacts in 
recent history occurred during that storm, having produced extensive dune erosion and property 
losses along the Kāpiti Coast, particularly at Raumati and Paekākāriki (Gibb, 1978).  Based on 
the analyses by Laing et al. (2003), it was recommended that surge levels of 0.75 and 0.85 
metre be adopted respectively for the 50- and 100-year projected extremes, with wave run-up 
levels contributing another 3.0 and 3.5 metres increase above the tides, to yield the total wave 
levels. 
 
The existing assessments of the “wave climate” for the Kāpiti Coast, including the ranges and 
extremes in the magnitudes of its wave heights, is based on the wave hindcast analyses 
undertaken by Laing et al. (2000), supplemented by those completed for KCDC by MetOceans 
(2007, 2010).  For hindcasts of the deep-water wave climate (the significant wave heights, 
periods and directions), a 20-year record was developed by NIWA for representative winds 
across the expanse of Cook Strait.  It was found in their analyses that the deep-water significant 
wave heights rarely exceeded 3 metres, the highest having been 4.5 metres generated by a 
storm in November 1995.  Corresponding time-series for ten shallow water sites along the Kāpiti 
Coast (at the offshore 10-metre depth contour) were derived based on wave refraction analyses, 
the results showing the expected sheltering effects of Kāpiti Island.  MetOceans (2007, 2010) 
similarly undertook wave hindcast analyses, for the 10-year period July 1997 through July 2006.  
Their hindcasts yielded hourly directional wave spectra for 16 locations along the Kāpiti Coast, 
demonstrating the significance of the wave-energy shadow zone directly behind Kāpiti Island, 
there being of the order of a 0.7-factor reduction in the mean wave heights; the maximum 
hindcast significant wave heights accordingly ranged from 3.13 to 4.83 metres along this coast.  
Extreme-value projection analyses were undertaken for the 1, 10, 50 and 100-year return 
periods, the 100-year extremes away from the shadow zone being 5.50 to 5.95 metres, while 
those in the direct lee of the Island are reduced to 3.16 metres.   
 
While no tests were undertaken by either of these studies of the wave climate to determine 
whether there has been a multidecadal trend of change in the significant wave heights, the 
histogram of the deep water wave-height magnitudes determined in the hindcast by 
Laing et al. (2000) showed a pronounced skewness toward the highest waves; as discussed in 
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Section 2, this signifies that if there is a trend of increasing heights the extreme magnitudes 
generated by the strongest storms would increase at the greatest rates, potentially enhancing 
the Kāpiti erosion and inundation hazards. 
 
An investigation of the ocean processes within the Cook Strait is apparently underway by Dr Iain 
Dawes, our awareness of his analyses having been derived from a printed copy of an undated 
(but apparently recent) power-point presentation, Wellington Region Storm Surge Modelling.  
According to his graphics, while his model analyses include the entire area of the Cook Strait, 
the focus of his presentation was on the southern Kāpiti Coast, illustrated by photos of the high 
water levels and impacts resulting from storms on 17 October 2007, and at Raumati on 23 July 
2008.  Of particular interest to the Kāpiti hazards are his analysis results graphing the hindcast 
significant wave heights versus storm tide water levels, showing a positive trend in their 
respective increases depending on the storm’s magnitude, with the maximum significant wave 
heights reaching about 5 metres, accompanied by storm tides in the range 1 to 1.2 metres 
above mean sea level (excluding wave setup and runup).  Another graphic shows analyses of the 
alongcoast variations in the storm tide plus the wave setup, undertaken for 8 major storm 
events dating from the 1960s to the present, the highest levels on the Kāpiti Coast having been 
achieved by a storm on 6 September 1994, when water levels reached 2.0 to 2.5 metres above 
mean sea level.  As will be reviewed later in this Section, such analyses by Iain Dawes come 
close to the total water elevations reached during storms, only the wave swash runup on the 
beach not having been included to yield the total water levels from the combined processes, 
which are used in models that have been developed to evaluate property erosion impacts during 
major storms, and in projections of the most extreme potential future hazards (Ruggiero et al., 
2001). 
 
The investigations of the ocean processes by Laing et al. (2000), MetOceans (2007, 2010), those 
recently completed by Bell and Hannah (2012), and underway by Iain Dawes, are extremely 
important in providing assessments of the waves, predicted tides, raised water levels by storm 
surges, the IPO climate control with La Niñas raising water levels, and rates of rising sea levels 
locally affected by subsidence of this coast.  It is the conclusion of this Panel that these 
investigations have yielding data sets for the ocean processes that can support scientifically-
based evaluations of the Kāpiti Coast’s hazard zones, as recommended by NZCPS 2010. 
 
While investigations have supplied documentations of the ocean processes along the Kāpiti 
Coast, there have been only limited studies of its beaches — the sources of its sediments, its 
morphologies, and documentations of the processes and resulting impacts to the beaches and 
shore-front properties during major storm events.  Its beaches are composed of fine to medium-
grained sand, with their profiles having low slopes, of the order of 0.010 to 0.015 (1V:100H or 
0.6° to 1V:67H or 0.9°) according to the surveys contained in the recent report by Lumsden 
(2013).  Kāpiti Island provides significant protection from high storm waves to the stretch of 
shore centred on Paraparaumu and Raumati, the result being that wave heights are moderated 
within that sheltered shore, while retaining their long periods so they become regular low 
steepness swell waves.  With this combination of low-sloping beaches and reduced energy swell, 
the beaches within this south-central part of the Kāpiti Coast are “dissipative” in the 
morphodynamics classification of beaches by Wright and Short (1983), representing a relatively 
stable beach in that the arriving waves break well offshore, beginning to break where the wave 
height is approximately equal to the water depth, continuing to lose their energy while they 
cross the wide surf zone as turbulent bores.  When a storm occurs, the increased wave heights 
break further offshore, creating a wider surf zone so that much of their energy is dissipated, 
significantly reducing the wave heights prior to reaching the shore.  During at least the winter 
months, dominated by seasonally higher waves compared with the summer, it is likely that 
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beaches along the entire length of the Kāpiti Coast are dissipative, although during the summer 
they appear  to be “intermediate” in the Wright and Short (1983) classification (based on our 
observations during the December 2013 field trip), this morphology being more dynamic, three 
dimensional, and more susceptible to property erosion.  However, with this representing the 
summer morphology, it’s not likely to result in significantly increased hazards to the Kāpiti 
properties.  
 
Locally, mainly in proximity to inlets, the fine sand beaches are backed by accumulations of 
gravel and cobbles, this combination being termed a “composite beach”, in which the gravel acts 
to further dissipate the wave energy, providing additional protection to the foredunes and 
properties.  The central portion of the coastline sheltered by Kāpiti Island has also historically 
been accreting, gaining sand so that the shoreline has built out to form a cuspate foreland (a 
local widening), the sand having been supplied by rivers to the north.  The present-day hazards 
from foredune erosion and recession therefore exist primarily along the shores beyond this 
stretch of sheltered accreting shore, mainly to its south, although in the future with rising sea 
levels the cuspate foreland could revert to being dominated by erosion with a retreating shore, 
increasing the hazards to properties. 
 
From the standpoint of the morphologies of the beaches, with their being predominantly 
“dissipative” due to having low slopes, they provide a natural buffer protection to the ocean-
front properties, dissipating the energies of the waves and also their swash runup levels at the 
shore.  On the other hand, the impacts from a rise in the mean water levels, however temporary 
when it occurs as a storm surge, or during La Niñas produced by warmer ocean-water 
temperatures, the low beach slopes magnify the horizontal shift in the shoreline, moving it 
landward, with major storms completely flooding over the beach, allowing the waves to directly 
attack the dunes and properties, even potentially overtopping substantial seawalls (Gibb, 1978).  
For example, the analyses by Iain Dawes determined during the severe storm on 6 September 
1994 the storm tide plus the wave setup (but not the swash runup) raised water levels by 2.0 to 
2.5 metres above mean sea level — the water’s edge could therefore have shifted landward by 
some 200 to 250 metres, with water levels reaching the elevations of the dunes and seawalls 
according to the surveyed beach profiles graphed in the report by Lumsden (2013). 
 
Important to hazard assessments for the Kāpiti Coast is the availability of beach profiles 
surveyed at intervals along its shores, permitting comparisons between dune elevations and the 
combined ocean processes — the predicted tides, the actual tides elevated by a storm surge, the 
swash runup of storm waves, and in the longer term with the water levels raised relative to the 
land by rising sea levels.  The history of beach and offshore profile surveys along the Kāpiti 
Coast has been reviewed by Lumsden (2013), the earliest dating back to the 1970s, undertaken 
in response to the storm damage experienced in 1976 and again in 1979.  There was increased 
surveying during the 1990s, and especially in 2000 as part of a coastal hazard management 
study, the surveys since then including 27 sites along the length of the Kāpiti Coast.  The report 
by Lumsden (2013) of the survey results included graphs of profiles at each of the sites, with 
comparisons between those in June 2000, December 2007, and June 2011.  The report contains 
tabulations of the changes in sand volumes between 2000 and 2011, horizontal beach 
displacements at the mean high water spring (MHWS), mean seal level (MSL), mean low water 
spring (MLWS), and Dune Toe, and the width of the dry beach.  A commentary describes each of 
the profile sites, and the report discusses those areas that have the greatest risk of future 
impacts from erosion and inundation. 
 
The accumulation of surveyed beach profiles is particularly important to two components of the 
Kāpiti hazard-zone assessments.  Surveys over a number of years have yielded records of 
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changing shoreline positions in response to the net erosion or accretion of the beach (the trend 
depending on the site), and at some sites the extent of erosion of the sand dunes and ocean-
front properties. As will be reviewed in Section 4, these surveyed profiles are supplemented in 
the analyses of CSL (2008a, 2012) by records from old maps and aerial photographs, which 
document the longer-term evolution of the shoreline spanning the 20th century.  The other 
potential application for the surveyed profiles is in an analysis of the Kāpiti Coast’s “budget of 
sediments”, involving assessments of the contributions of sand to the beach derived from its 
sources, evaluations of its potential losses, with there being either a net gain or loss (Komar, 
1998).  Being conceptually analogous to a monetary budget, the sources in the sediment budget 
are termed “credits”, the losses are “debits”, while the net “balance” in the sediment budget 
determines whether in the long term that beach experiences net erosion (recession) or is 
accreting (the budget is respectively either in the “red” or “black”).  In applications on coasts 
such as Kāpiti where there has been a programme of annual beach surveys, the status of the 
balance in the budget is better established and has less uncertainty than the volumes of the 
individual credits and debits, this balance having been determined from the surveys over the 
years, providing a direct documentation of whether it has experienced net erosion or accretion.  
Efforts to assess the credits and debits are then directed toward understanding the factors that 
are responsible for that balance; for example, whether commercial sediment extraction in a 
river, the construction of a dam, or changes in rainfall and river runoff has reduced the supply of 
sand and gravel to the coast, being responsible for erosion its beaches and potential property 
losses.   
 
The survey monitoring programme for the Kāpiti Coast provides tabulated values of the volumes 
of sand per year gained or lost from each of the 27 survey sites, which could be combined to 
yield the balance in the sediment budget for this entire stretch of shore.  Or more informative 
would be obtained if three separate budgets are developed, respectively for the growing cuspate 
foreland sheltered by Kāpiti Island (where the budget is in the “black”), and separate budgets for 
the shores to its north and south, the latter apparently being in the “red”.  This would complicate 
the analysis somewhat by also requiring evaluations of the directions and rates of the longshore 
transport of the sand on the beaches, representing exchanges between these separate sections, 
the loss of sand from one section (a debit) becoming a gain (credit) for the other. A much higher 
level of sophistication in the analysis is provided by applications of numerical shoreline models 
that divide the shore into a large number of sections (“cells”), the model calculating the net 
longshore transport of sand between the cells based on the wave climate, followed by 
calculations of the gains and losses of sand in each cell to determine its change in shoreline 
position, this in effect constituting a localized sediment budget for each cell.  An excellent 
example of such a model application is that by Tonkin & Taylor (2005) for the shores of Hawke’s 
Bay, undertaken to evaluate the impacts of commercial mining of sand and gravel from its 
beach, determining the increased risks to coastal properties.  In the case of the Kāpiti Coast, the 
model’s “cells” could correspond to the 27 survey sites, and could analyse the future evolution of 
this shore in response to the projected rise in sea levels, determining the fate of the cuspate 
foreland that has accumulated along the shore sheltered by Kāpiti Island. 
 
While the programme of periodic surveys of beach profiles along the Kāpiti Coast supports a 
determination of the balance in its sediment budget, the objective then becomes to evaluate the 
budget’s “credits” and “debits”, the sources of sand being the rivers and streams along its 
shores, including those north to Wanganui and beyond, their supplies of sand to the beaches 
then being transported southward by the waves, eventually reaching the Kāpiti shores, 
accounting for the history of accretion along most of its coast.  The potential debits could include 
sand blown inland to accumulate in dunes, or carried offshore into deep water or alongshore by 
the waves; however, the erosion of the dunes or the onshore transport of sand could equally 
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represent credits to the beach-sand volumes.  As a Panel we have not reviewed past reports that 
considered these factors expected to affect the sediment budget, assuming such studies exist.  
Important to the balance in the Kāpiti beach sediment budget are human-induced environmental 
impacts in the river watersheds, in the past or are planned for the future, that would alter the 
volumes of sand delivered to the coastal beaches — commercial sediment extraction and dams 
reducing the volumes, while deforestation and the resulting increased land erosion could have 
increased the quantities of sand carried by the rivers.  Future changes in the climate also need 
to be anticipated, with the potentially altered rainfall, river discharges and flood extremes 
affecting the contributions of sediments by the rivers, in turn affecting the balance in the Kāpiti 
sediment budget and trends in its rates of shoreline accretion or recession. 
 
Past investigations and those underway have yielded data sets on the waves, tides and beach 
profiles, with their analyses leading to assessments of storm-surge levels, trends in sea levels, 
and extremes in the processes.  These are the processes that are required in hazard 
assessments, and it is the opinion of this Panel that they serve as an important foundation in 
analyses of the Kāpiti Coast’s hazard-zone analyses, and additional research is to be encouraged 
by KCDC.  Missing and recommended as being an important additional investigation are analyses 
of this coast’s beach-sediment budget, with the balance in its budget determined from the beach 
profile surveys, accompanied by examinations of the effects of human impacts and climate 
change on the sand volumes contributed to this shore by rivers. 
 

3.3 Coastal Hazards as a Concept, and Analysis Methodologies 

Based on the reviews above of the ocean processes, it is apparent that some are episodic, 
associated with major storm events, while others are long term and progressive, most important 
being the rise in sea level.  Both have climate controls, including global warming, and short-term 
climate events such as the occurrence of a La Niña known to elevate the measured tides by 10s 
of centimetres above their predicted levels, and the IPO cycles spanning decades, the alternating 
dominance between La Niñas and El Niños.  The evaluation of hazard zones requires an 
integration of their combined effects, the goal being to evaluate their present-day potential 
extremes, and to project the enhanced hazards through the next 50 to 100 years.  This goal is 
illustrated schematically in Figure 5, with the seaward-most portion labelled “Storm Bite”, 
representing the extent of properties already under the threat of impacts from severe storms, 
the combination of the tides raised by its surge, and the wave setup and swash runup produced 
by extremes in wave heights and periods.  Beyond this immediate potential danger from major 
storms are the future hazards due primarily to rising sea levels, their accelerated rates projected 
by climatologists, and possibly also by an increase in storm intensities that generate greater 
wave heights and surge elevations. 
 
It should be noted that in hazard-zone assessments based on the causative processes, the focus 
of coastal scientists and engineers is primarily on the zones, colour coded in the cross-section 
diagram of Figure 5, with the lines between those being requested by management concerns 
(the 50- and 100-year projections), imposed on what in reality is a continuum in the processes 
responsible for the hazards, their enhanced trends produced by Earth’s changing climate. 
Furthermore, we generally make a distinction between “hazard zones” based the evaluated 
causative ocean processes and sediment budgets, and “set-back lines” established in 
management programmes, recognising that the latter take into consideration many other 
factors, such as those recommended in the New Zealand Coastal Policy Statement 2010 (NZCPS 
2010). 
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Both of these parameters represent long-term average rates of recession (metres per year), so 
that in order to assess the resulting horizontal retreat of the shore and dunes they must be 
multiplied by the hazard assessment period in years, denoted by ܶ in Equation (1), generally 50 
and 100 years, at present providing projections through this century to 2065 and 2115, 
representing something of a “moving target” that depends on when the assessment is 
calculated. 
 
There is the possibility of including other factors in Equation (1), for example if an increase in 
the storm intensities and their enhanced wave heights and surge levels in the future need to be 
accounted for.  As included in Equation (1), ܵ is evaluated on the basis of the present-day wave 
climate, without a time dependence, so any progressive increase in the future needs to be 
treated as a rate, much like the rise in sea level, the resulting recession of the foredunes again 
depending on the assessment period, ܶ.  An interpretation of the factor ܴ is complicated in that 
having been based on the rate of recession of the shoreline or dune edge over time, yielding an 
average rate, it is the result of both the sediment budget, the net gains and losses of beach sand 
at that profile site, and the local rise in the relative sea level.  But according to Equation (1), the 
rise in sea level at present and projected into the future is directly accounted for by ܺ, raising 
the possibility that it has been “double counted”.  In recognition of this, the present-day rate of 
sea-level rise could be subtracted from the measured shoreline recession, leaving a value of ܴ 
that represents only the balance in the sediment budget, or an alternative approach is that ܺ 
accounts only for the increase in the rate of rise of the sea level due to its future acceleration. 
 
The details involved in the methodology applied to evaluate ܵ, the extent of the potential dune 
erosion caused by an extreme storm, is particularly important in that it is the primary agent of 
dune erosion and property losses, the causative processes being storm surge that elevates the 
tides, atop which the increased levels of the swash of the storm-wave runup on the sloping 
beach impact the toe of the dunes.  Without the impacts of storms, the slow rise in the level of 
the ocean would simply flood over the land, slowly covering the properties.  This significance of 
storm occurrences is illustrated, for example, in studies undertaken in the Great Lakes of North 
America, where there are cycles in the levels of the lakes spanning decades.  During periods of 
rising lake levels, beach surveys and measurements of the erosion of the dunes have shown that 
the erosion lags well behind the increased lake levels, the recession instead depending on 
episodic occurrences of storm-generated waves.  Therefore, in a view of the coastal hazards that 
depend on the climate controlled ocean processes, it is preferable to focus on occurrences of 
storms and their extremes, at present and possibly enhanced in the future, while the rise in sea 
levels with time simply raises the elevations of wave attack, moving their zone of impacts 
upward and inland across the coastal properties. 
 
The evaluation of ܵ in Equation (1) can be viewed as being the “short-term” or “immediate” 
hazard, the inference being that it constitutes a relatively immanent threat of erosion or 
inundation of ocean-front properties, that “long-term” trends such as rising sea levels and 
increasing wave-heights are not included.  This immediacy is most clearly represented by the 
occurrence of a major storm, or perhaps the cumulative erosion of a sequence of storms during 
the winter, which could happen this year or at any time in the future.  However, when an 
examination of past erosion events is undertaken, it becomes evident that an important 
consideration is the simultaneous occurrence of high storm-generated waves together with an 
elevated measured tide.  Examining this combination in still greater detail, it is generally found 
that the erosion occurs in response to the increased swash run-up levels produced by the storm 
waves when they reach the sloping beaches, occurring atop the elevation of a high predicted 
astronomical tide, with the measured tide elevated still further by the surge produced by the 
storm. Other contributing factors to the elevated tide might be the normal seasonal cycle of 
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beaches.  Determinations of the hourly ܹܶܮs from the model (i.e., the measured tides plus the 
vertical component of the wave run-up) yielded a multi-decadal documentation of the numbers 
of hours during which those combined processes and their ܹܶܮs could impact the toe of a 
foredune or sea cliff, depending on its elevation.  Such analyses also permitted assessments of 
the extreme events that had occurred over the decades, the extremes in the ܹܶܮs being most 
important in assessments of property erosion and flooding hazards.  Beyond that, the time series 
of evaluated ܹܶܮs was applied to project the 50- and 100-year ܹܶܮ extremes that represent the 
potential future hazards to properties, extremes that would be more important than the deep-
water significant wave heights that comprise the wave climate, the ܹܶܮs reflecting the joint 
occurrences of the causative processes. 
 
Having determined the ܹܶܮs and their extremes during major storms, the next step in the 
hazard assessment involves an analysis of the resulting potential extent of erosional retreat of 
the backshore properties.  In the case of foredunes, this involves the model shown in Figure 6.B 
(Komar et al., 1999, 2002), a geometric analysis that is conceptually similar to Bruun’s (1962) 
beach recession model that is directed toward impacts from rising sea levels.  The difference 
from the Bruun model is that in the present application it is the measured tides plus the wave 
swash run-up that drive the erosion process, although changes in sea levels could also be 
included to project future hazards.  As illustrated in Figure 6.B, the erosion of the dune is 
modelled by projecting the beach slope up to the elevation reached by the ܹܶܮs during a major 
storm, the resulting extent of dune erosion being given by the equation: 
 

  DE୫ୟ୶ ൌ
൫ିె൯ା∆

୲ୟ୬ஒ
 (2) 

 
where  

tanβ is the beach slope; and 
 ,is the potential reduction in the level of the beach face at the time of the storm ܧܤ∆
produced either by the storm waves or possibly by the local presence of a rip-current 
embayment. 

 
The calculated result from this model is expected to be the potential maximum dune retreat 
during the storm, in that the model does not account for there being a significant delay in the 
erosion relative to the water levels.  This assumption has been acceptable in management 
applications in that it provides a conservative assessment of the hazard zone, in effect a worst-
case margin of safety for homes constructed in vulnerable foredunes.  With that extreme having 
been evaluated, lesser degrees of hazard elevations could be based on field evidence from the 
site being investigated, commonly in the form of evidence from the dune morphologies (e.g., 
remnants of past erosion scarps), or flotsam (e.g., drift logs) carried inland and found within or 
beyond the dunes. 
 
With these models having been developed to be used in calculations of erosion hazards along the 
coast of the US Pacific Northwest, their initial testing included both the storm induced erosion of 
sandstone sea cliffs, dependent on the ܹܶܮs and resistance of the rocks composing the cliff, and 
of properties within foredunes where the tests involved the predicted dune retreat based on the 
geometric model and ܹܶܮs during specific storm events, compared with the actual measured 
dune retreat distances (Ruggiero et al., 2001; Komar et al., 2013).  In the most extreme 
comparison, the erosional retreat of the dunes was the cumulative impact of three severe storms 
during the winter, with the last having been the most extreme in terms of both its wave heights 
and ܹܶܮs, one of the most extreme events in decades.  Recently the models have also been 
applied in analyses of the erosion and flooding hazards along the shores of Hawke’s Bay, first 
examining the present-day hazards associated with major storms and their ܹܶܮs based on 
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hourly measurements of waves and tides, followed by projections to 2100 that included rates of 
rising sea levels and increasing wave heights, both having been based on tide-gauge and wave-
buoy records (Komar and Harris, 2014). 
 
Rationally-based methodologies have been developed to be applied in quantitative assessments 
of hazard zones, including Equation (1) formulated by Gibb (2005) that includes the multiple 
factors that need to be evaluated, clearly differentiating between the “short-term” episodic 
impacts of storms, versus “long-term” progressive trends of change, foremost being a projected 
accelerated rate of rising sea levels, and shoreline recession or accretion depending on the 
sediment budget, the gains and losses of sand from the beach.  Models have also been 
developed to evaluate the extent of dune recession during major storms, produced by the ocean 
processes of high predicted astronomical tides, further elevated by the storm surge, plus the 
swash runup levels of the waves on the sloping beaches, combined to yield extreme total water 
levels that reach and erode the dunes and properties backing the beaches.  It is the 
recommendation of this Panel that with the necessary data being available for the Kāpiti Coast, 
these models be employed in calculating its hazard zones. 
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As applied by CSL, the calculated Coastal Erosion Predicted Distance (ܦܲܧܥ) has been written as: 
ܦܲܧܥ  ൌ ܶܮ  ܵܶ  ܴܮܵ  ܵܦ   (3) ܷܥ
where  

 ;is the long-term historic shoreline change ܶܮ
ܵܶ represents the short term processes that produce more immediate impacts; 
 ;is the long-term shoreline recession due to the rise in the relative sea-level ܴܮܵ
 is a dune stability facto; and ܵܦ
 .is the combined uncertainty in the assessment ܷܥ

 
The main difference from the original Equation (1) formulated by Gibb is that each factor in this 
CSL version is a horizontal distance of foredune retreat, these several distances being 
cumulative to yield the total estimated recession distance projected into the future, the 
recommended erosion hazard zone. Equation (3) has absorbed the time frame being considered, 
ܶ in Gibb’s original Equation (1), so that ܶܮ and ܴܵܮ in Equation (3) need to be evaluated twice, 
separately for the 50- and 100-year required projections. 
 
The reviews presented here consider each of these components in Equations (1) and (3), 
important to the present-day and future erosion hazards.  It will be seen that the main 
differences between the Lumsden and CSL reports are in the methodologies they have applied in 
assessments of these individual contributing factors, differences that reflect their engineering 
versus geologic/geographic backgrounds.  This review begins with the long-term projection ܶܮ of 
the shoreline and dune recession, it representing the focus of the CSL (2008a, 2012) analyses, 
also serving as the basis for their short-term ܵܶ analyses, that will be reviewed later and 
compared with the process-based analysis methodology of Lumsden (2003).  
 

4.1 Long-Term Projections of Shoreline and Dune Recession (Factors R and 
LT) 

Author: P D Komar, Editor: J T Carley  
 
Projections of long-term rates and the resulting potential extent of erosion and inundation 
(generally 50 and 100 years into the future) are the primary goals of most coastal hazard 
assessments, with the results directed toward the establishment of hazard zones (set-back lines 
or hazard management zones).  Such projections, however, represent the most uncertain 
components in defining hazard zones, and this is also true for the Kāpiti Coast. This uncertainty 
was already evident in Section 2, there being a large range of projected future sea levels based 
on research undertaken by climatologists, and also concerning the possibility of there being 
increased storm intensities and the heights of the waves they generate. This problem in making 
projections is also inherent in the analyses of long-term trends of changing shoreline positions, 
and of the corresponding dune recession. The difficulty in defining shoreline changes is reflected 
in the published literature by coastal scientists, debating how it should be accomplished, raising 
questions concerning:  

 How to define the shoreline; 

 How to account for the effects of seawalls and other structures on the shore’s 
position; 

 Whether or not those structures will be maintained and survive through the 21st 
century with rising sea levels; and 

 How one approaches an analysis of the changing shoreline positions over the 
decades, to derive meaningful trends and statistically significant rates for the inland 
migration of the shore and erosion of coastal properties.   
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The investigations yielding the series of the CSL reports, dealt with such issues in analyses of the 
long-term shoreline changes along the Kāpiti Coast (CSL, 2008a, 2008b, 2008c, 2012).  Their 
analyses involved a detailed programme to cover the extent of that 38-kilometre length of 
shore, the coverage including 68 analysis sites, 12 representing environmental-specific analyses 
for river inlets.  However, even with this large number of sites subject to analyses, the results 
from CSL still represent sections of shoreline extending for a few hundred metres up to a 
kilometre, not having provided results at the level of individual properties. 
 
The primary shoreline data included in the CSL analyses were derived from aerial photographs, 
the earliest dating from the 1940s, and available at approximately 5- to 10-year intervals.  In 
the photographs the vegetation line was used as the shoreline indicator, a common practice that 
provides a relatively clear demarcation between the beach and foredunes.  Problems occur, 
however, where the beach is backed by a seawall or other type of shore-protection structure, 
with CSL having completed analyses that compared the natural dune-edge shorelines with 
positions of adjacent structures, to determine their differences.  Additionally, in making future 
projections along the southern Kāpiti coast where seawalls are common, the CSL erosion 
assessments considered three future scenarios:  

 Seawalls hold, remaining fully functional; 

 Seawalls will be repaired if they fail; and 

 Seawalls fail but are not repaired.   

According to the Updated report (CSL, 2012), for the 50-year projections both the managed and 
unmanaged scenarios needed to be analysed, whereas for the 100-year projection only the 
unmanaged scenario was to be considered. A series of hazard lines were accordingly created in 
the CSL reports, the choice being left to KCDC, depending on their management policies.  
  
Prior to the availability of aerial photographs, the main source of shoreline data for the CSL 
analyses came from cadastral maps, extending back as much as 135 years.  The limitations of 
using old cadastral boundaries dating from the 1800s were elucidated by CSL, as was their value 
as an indicator of long term coastal change.  Old maps can depict a variety of shoreline 
indicators, most commonly being the high water mark at the time of the survey; as discussed by 
CSL (2008a), this high water indicator is affected by the ocean’s waves and tides, resulting in its 
greater variability that introduces a random error in the shoreline data, with there also being a 
systematic displacement of the map shorelines from those based on the beach/dune 
demarcation line derived from aerial photographs.  For each site, the data for the assessed 
shoreline positions included on average about nine aerial-photo based data points, and one or 
two older map-based data points, although at some sites the numbers were significantly less. 
The resulting graphs of the shoreline time-series analyses for all of the measurement sites are 
presented in CSL (2008c), their Data Base report.   
 
The data acquired by CSL to determine the changes in shoreline positions for the Kāpiti Coast, 
spanning the past 135 years, appear to have been carefully collected and with their methodology 
being cognisant of the potential problems with defining shoreline positions and the effects of 
seawalls, a considerable effort having been required to complete this task.  Although, as will be 
seen in our comments directed toward questions concerning the CSL methodologies applied in 
their analyses of the trends and variations in shoreline positions, it is our opinion that the 
shoreline change time-series histories documented by CSL represent a valuable source of data, 
to be used in assessments of the Kāpiti Coast’s future hazards. 
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Evident in these three time-series shoreline analyses included in Figure 7, and even more so in 
others (CSL, 2008c), is the frequent occurrence of non-linearity of their trends over the decades. 
This non-linearity is problematic as linear-regression analyses are often applied to determine a 
trend from the regression slope, representing the rate of change in shoreline position (metres 
per year), either erosion/recession (negative slope), accretion (positive slope), or a stable 
shoreline position (no slope). Decisions were made by CSL (2008a) as to altered methodologies 
to be applied to sites having nonlinear trends, generally such that the projected rates represent 
a more conservative/precautionary result, recognising that uncertainties in future projections 
based on these regressions will be greatest for those sites having nonlinear time series. 
 
In their treatment of the time series, CSL (2008a) also undertook linear regression analyses for 
three separate time periods: the entire record (1870s to 2007); the earlier period (1870s to 
early 1950s); and the later period (1940s to 2007).  The significance of the division at 1950 is 
that it represents a stage in the development of the Kāpiti Coast that was marked by the 
inception of the construction of seawalls and other shore-protection structures, and also the 
availability of more reliable aerial photos. Accordingly, by considering the different time periods, 
erosion-rate assessments were derived for the pre-development natural conditions of the coast, 
pre-dating the structures or other management practices.  This transition in about 1950 is also 
evident in the three time series included in Figure 7, and although no seawalls are present at 
those sites they still could have been affected by structures in close proximity.  It is also possible 
that for some sites, this change could reflect the difference in shoreline positions having been 
derived from aerial photographs versus older maps, or it might be the result of a change in the 
ocean processes. 
 
As discussed in Section 3, a change in measured positions of the shoreline over the decades, 
seen in the time-series, can result from a number of factors including the balance between the 
beach sand supplies versus its losses (the “budget of beach sediments”), the global rise in mean 
sea level, and local changes in land elevations that can either be episodic or progressive, being 
of tectonic origin on the Kāpiti Coast.  In that the projected future rise in the sea level is 
separately evaluated in the methodology, the ܺ and ܴܵܮ factors respectively in Gibb’s Equation 
(1) and in Equation (3) employed by CSL, there is the potential for “double counting” the effects 
of the rate of rise in the relative sea level.  The preferred approach taken to avoid this is to 
remove the contribution of the 20th century rise in sea level from the analysed trend of shoreline 
change based on the time series, leaving only the portion that resulted from the gain of beach 
sand acquired from it sources, or its losses, the balance in that site’s sediment budget.  This 
approach is preferred in view of the importance of evaluating the sediment budget for the Kāpiti 
Coast, the goals of which were reviewed in Section 3.  It also corresponds to the actual 
environmental changes, whereas alternative approaches sometimes taken to avoid double 
counting apply an artificial “fix”, and as such are more confusing to the general public. 
 
There is concern that there may also be a double counting when the “catch-up” term is applied 
in analysis of sites where a seawall has not been maintained and is lost due to wave impacts, or 
for some other reason has been removed, the shoreline then shifting to where it should have 
been under natural conditions. 
 
It is evident from the three representative time series included in Figure 7 that the sediment 
budgets must have produced their contrasting patterns of change.  If the rise in sea level 
spanning the past century was the only factor causing the changes in shoreline positions, all 
three would show a progressive recession, at essentially the same rate.  The positive trend in 
the time series for C25-70, a persistent net accretion, demonstrates that the balance in its 
sediment budget must be well into the “black”, far exceeding the recession that would have been 
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produced by the rising sea levels.  The analysis of that site with its positive balance also 
demonstrates that it has acquired more sand reaching that shore, having been supplied by the 
rivers to its north, than is being transported by the waves alongshore further to the south, 
reaching the foreland sheltered by Kāpiti Island, which has also experienced accretion since 
about 1960, according to its time series (C13-24) in Figure 7.  Of interest, its increased rate of 
accretion corresponds to the post-1960 reduction in the rate of shoreline accretion seen to the 
north at C25-70, evidence that the balance in the budget to the north is now closer to zero, 
suggesting that it is bypassing more of the longshore sand transport to the south, increasing the 
supply to the expanding cuspate foreland.   
 
The increased rates of shoreline recession to the south, evident in time series for C4-18, has 
been interpreted as the result of the growth of the foreland having blocked its arrival from the 
rivers to the north, the foreland having captured more sand and bypassing less to this southern-
most stretch of shore.  However, surveys of the offshore bathymetry show the existence of a 
shoal seaward of this shoreline south of the cusp’s apex, interpreted as being the pathway of the 
southward movement of sand that is bypassing the apex, with the wave-induced sand transport 
along the shore itself being directed toward the north, this pattern more probably accounting in 
part for the erosion problems at Paekakariki (Gibb, 1978; de Lange, December 2013).  The CSL 
(2008a) report attributes part of the erosion experienced in the Queen Elizabeth Regional Park, 
an unprotected “natural” shore, to the end-effects of the seawalls to both its north and south, 
this being a possible factor but not likely the dominant cause of the Park’s erosion. 
 
One additional assumption included in the CSL methodology, which received considerable 
criticism by homeowners, is that of neglecting any benefits to properties based on their being 
located on an accreting shore, most obvious being those along the shores of the cuspate 
foreland sheltered by Kāpiti Island, but also those to its north that have also experienced beach 
accretion throughout the 20th century.  As justification for this practice, CSL (2008a, page 24) 
offers the explanation: 
 

“Of particular note is that for all areas subject to a positive (seaward) shoreline trend, the rate was set to 
zero.  This approach is common when assessing hazards for accreting coats as it removes the assumption 
of continued accretion, provides an increasing safety margin.” 

 
The Panel recognises that CSL is correct in this being a common practice in methodologies 
applied to erosion hazard projections, although in the case of the Kāpiti Coast it represents a 
rather extreme assumption that future rates of rising sea levels will overcome the positive 
balance provided by the sediment budget.  The question of this being a valid assumption, that 
the cuspate foreland would soon disappear under rising sea levels, could be addressed by an 
evaluation of the sediment budget, thereby accounting for the dominant factor in past changes 
shown in the CSL (2008c) time series of shoreline evolution, projected into the future to assess 
changes with higher rates of rising sea levels.  On a more sophisticated level, as described in 
Section 3, numerical computer models are available that could be applied to simulate the 
evolution of the entire cuspate foreland, an analysis that would account for this coast’s wave 
climate and the variable rates of longshore sand transport that have an important role, it not 
simply being a case of the existing foreland being flooded by the waters of the rising sea. 
 
Based on series of aerial photographs and old maps, Coastal Systems Ltd has carefully compiled 
measurements of the changes in the Kāpiti Coast’s shoreline positions, this being a valuable 
source of data to be used in assessments of this coast’s future hazards.  However, it is important 
to separate the components responsible for those measured shoreline changes, in part caused 
by the rise in relative sea levels spanning the 20th century, but otherwise dominated by the 



 

 
 FINAL 31 

sediment budget, with sand contributed to this beach by rivers, accounting for the accreting 
shores to the north and especially forming the cuspate foreland, reflecting the positive balances 
in their budgets.  It is important to undertake this separation in order to remove the portion of 
measured trend of shoreline change that was caused by rising sea levels, leaving only the 
sediment budget component, in order to avoid “double counting” the effects of sea-level rise, 
with it having also been included in a direct analysis that projects the future effects of 
accelerating rates of rising sea levels (Section 4.2).  
 
In view of its importance, the Panel recommends that within the next decade KCDC undertake 
analyses of beach-sediment budgets, in order to determine the gains and losses of the beach 
sand that account for the shoreline changes found in the CSL time series, and by Lumsden 
(2013) in recent programmes of beach-profile surveys (Section 3).  Such budgets may provide 
an explanation for the nonlinear time-series variations found at some sites, and should also 
permit an assessment of whether the accretion of its central cuspate shore will revert to erosion 
in the near future.  It is also important that investigations be undertaken of the rivers, the 
sources of the beach sand, particularly to determine how climate change could alter them, 
resulting in altered volumes of sand being contributed to the Kāpiti beaches. 
 
The panel also recommends that over the next decade, probabilistic estimates of long term 
change be developed.  The greatest present impediment to this is assigning probabilities to 
future emissions scenarios and the consequent sea level rise. 
 

4.2 Projections of Shoreline Recession due to Rising Sea Levels (Factors X 
and SLR) 

Author: P D Komar, Editor: J T Carley  
 
Projections of the long-term rates and the potential resulting extent of property erosion, 
estimated for 50 and 100 years into the future, are the primary goals of most coastal hazard 
assessments, yet they are the most uncertain of the components in Equation (3) that contribute 
to the Coastal Erosion Predicted Distance (ܦܲܧܥ).  This uncertainty was evident in Section 2 
where projections of future accelerated rates of rising sea levels, and potential levels by the year 
2100, were reviewed, the analyses by climatologists having yielded a large range of projections.  
As will be reviewed here, there are additional uncertainties in evaluating the extent of shoreline 
recession, or dune erosion, compounding the problem in evaluating the distance ܺ in the Gibb’s 
Equation (1), and ܴܵܮ in Equation (3) applied in the CSL methodology. 
 
According to tide-gauge measurements the average rate of rise in sea level spanning the 20th 
century was about 1.7 mm/year, with a rate of 2.0 mm/year for the latter half of the century.  
Since 1993 the tide-gauge and satellite data agree that there has been an increased rate of 
about 3.3 mm/year, a possible indication for there being an acceleration produced by global 
warming.  It was also seen in Section 2 that over the years there have been revisions in the 
magnitudes of future projections by climatologists, with the IPCC (2007) report having projected 
an increase of the order of 0.20 to 0.59 metre (excluding ice melt), with an upper value of 
0.79 metre by the year 2100 if a contribution by ice melt is included.  Applying different 
methodologies than IPCC, still higher projected sea levels have been derived by Rahmstorf 
(2007) and other researchers, supporting an increase of 0.50 to 1.20 metres in 100 years.  It is 
noteworthy that the most recent IPCC (2013) projections are for sea levels to rise between 0.26 
and 0.98 metre by 2100, the highest value being based on their model scenarios assuming the 
highest rates of greenhouse gas emissions.  It is apparent in applying these projections offered 
by climatologists, including those by IPCC, that there is a range of possible future sea levels to 
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be considered in management applications, directed toward evaluations of future coastal erosion 
and flooding hazards. 
 
In analyses of the erosional recession of beaches and of backshore properties within dunes, 
produced by a long-term rise in sea levels, the traditional approach has been to apply the model 
developed by Bruun (1962, 1988), which represents an upward and landward shift of an 
equilibrium beach profile, with erosion of the upper portions of the beach profile and dunes, with 
the offshore transport and deposition of that eroded sand, which accumulates and raises the 
seafloor in the immediate offshore at the same rate as the rising sea level, there having been a 
conservation in the volumes of sand during this transfer.  Being a two-dimensional geometric 
model, the resulting landward shift in the profile and shoreline depends on the change in the 
level of the sea, and on the beach slope over which this migration occurs.   
 
In its simplest form, the resulting Bruun equation for the shoreline retreat distance can be 
expressed as: 
 
ሻܴܮܵ	ݎ	ሺܺ	݊݅ݏݏܴ݁ܿ݁	݈݁݊݅݁ݎ݄ܵ  ൌ

ௌ

௧ఉ
         (4) 

where  
 is the sea-level change; and ܥܮܵ
 is the average profile slope, generally taken as that of the profile across the beach and ߚ݊ܽݐ
into the offshore out to a “closure depth”, the seaward limit of profile changes that occur in 
response to seasonal cycles in surveyed profiles, and during major storms.   

 
The ratio 1 ⁄ߚ݊ܽݐ  in Equation (4) is commonly referred to as the Bruun Factor (BF), representing 
an “application factor” in the distance of shoreline recession as a function of the rise in sea level.   
Over the “closure depth” length of profiles having decreasing bottom slopes in the offshore, it 
has been found in applications that generally ߚ݊ܽݐ ൎ 0.02 to 0.01 (BF ≈ 50 to 100), with 
Equation (4) thereby indicating that the amount of erosional recession of the shoreline will be of 
the order of 50 to 100 times the rise in sea level. 
 
A number of research investigations have provided tests of the Bruun model predictions, 
comparing the assessments derived from Equation (4) with measured rates or distances of 
shoreline and dune recession.  While some tests found significant disagreement between the 
predicted and measured erosion, resulting in considerable criticism of the Bruun model and 
equation, it has been determined in more detailed studies that this disagreement can often be 
accounted for by the balance in the “budget of beach sediments”, evaluations of a beach’s gains 
in sand from its sources (e.g., rivers) versus losses, its effect on the changing shoreline positions 
far exceeding those due to the extent of the rising sea level during the few years of the research 
comparisons (see Komar (1998, p. 121-129) for a review of these tests). 
 
An alternative approach to evaluate the shoreline recession in response to a rise in sea level is to 
apply the Ruggiero et al. (2001) model, reviewed in Section 3, based on evaluations of the ܹܶܮs 
(Figure 6A), here simply including the rise in future sea levels, it being added to the extremes in 
the measured tides plus the swash runup levels evaluated from the wave heights and periods 
during storms, thereby combining the short-term erosion processes with the long-term rise in 
sea levels (and also the trend of increasing swash runup levels due to a potential intensification 
of future storms, if included in the analyses). The assumption behind this approach is that the 
long-term progressive rise in the mean level of the sea will gradually result in the landward and 
upward migration of the beach and its short-term storm impacts, progressively cutting back the 
foredunes and then continuing inland. If one simply algebraically adds the Bruun Equation (4) to 
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Equation (3) for the geometric dune erosion model, one essentially obtains the same result as 
simply including the sea-level rise in the value for the ܹܶܮ.  However, in that model analysis the 
slope ߚ݊ܽݐ will be that of the swash zone in proximity to the shore, generally a higher slope than 
the 0.01 to 0.02 (1V:100H to 1V:50H) values commonly used in analyses applying Bruun’s 
equation, there accordingly being less predicted recession, and smaller hazard distances, when 
applying the Ruggiero et al. (2001) model with an inclusion of the sea-level projection.   
 
This model based on evaluations of ܹܶܮs, including the projected rise in sea levels, followed by 
application of the geometric dune erosion model, Equation (2), has been applied in hazard-zone 
assessments along the coast of the US Pacific Northwest, and in analyses of the future stabilities 
of the gravel barrier ridges on the shores of Hawke’s Bay (Komar and Harris, 2014).  This was 
the approach also followed by Lumsden (2003) in his analyses of the Kāpiti Coast hazard zones, 
although at the time of his study he used the mid-range projections of future sea levels provided 
by earlier IPCC publications and in the NIWA study (Laing et al., 2000), specifically an increase 
of 0.45 metres by 2100.  Although his analysis methodology had been sound, it needs to be 
updated to account for more recent sea level rise projections, and also changes in management 
policies. The analyses by Lumsden (2003) will be examined at length in the following section, in 
considering the short-term erosion hazards produced by major storm events. 
 
In the reports by CSL (2008a, 2012) for the Open Coast erosion hazards, the analysis of the ܴܵܮ 
factor to account for the shoreline recession due to a rise in the relative sea-level was based on 
application of Equation (4), originally formulated by Bruun (1962, 1988).  This initially raised 
confusion in our review in that CSL attributed this equation to Komar et al. (1999), the 
publication that instead had proposed the geometric dune erosion model, Equation (2), which 
depends on the ܹܶܮs of the tides plus the wave swash runup, although the sea-level rise could 
be included.  However, in their application of Equation (4), CSL based the calculation on the 
average inter-tidal beach, which would be steeper than the slope based on the profiles closure 
depth, normally used in the Bruun equation, but less steep than the swash zone as applied by 
Ruggiero et al. (2001) in calculating the wave runup at the shore to determine the ܹܶܮ, in turn 
used in the geometric dune erosion Equation (3).  The ߚ݊ܽݐ slopes used by CSL (2008a, fig. 7A) 
ranged from a minimum of about 0.015 (1V:67H; the apex of the cuspate foreland) to a 
maximum of 0.09 (1V:50H; just south of the Otake River Inlet), with most being of the order of 
0.02 (1V:50H); this corresponds to a Bruun Factor (BF) amplification range of 11 to 67, with the 
majority at 50, overlapping the 50 to 100 values commonly used as a “rule of thumb” in 
applications of the Bruun model. Although the methodology applied by CSL does not exactly 
conform with that generally employed in basing the shoreline and dune erosion on the Bruun 
model, with the slope depending on the “closure depth”, nor on the methodology involving 
calculations of the total water levels	ሺܹܶܮ) and the resulting dune recession, the results can be 
viewed as being reasonable, while at the same time illustrating the resulting large uncertainties 
in the calculated SLR recessions, being sensitive to the beach slopes chosen.   
 
The 2008a report by CSL for the Open Coast was limited to a 50- to 60-year projection, based 
on the  NIWA/MFE recommendation relating to the then most recent IPCC projections, with the 
most probable value being sea-level rise of 0.31 metre, and an extreme of 0.42 metre.  The 
resulting values for the ܴܵܮ dune recession, graphed in CSL (2008a, fig. 7B), ranged from 0 to 
21.4 metres, with a mean of 11.6 metre, the 0 metre recession values being sites having shore-
protection structures, the highest values being those with the lowest profile slopes.  The updated 
CSL (2012) report retained those earlier estimates for the 50-year recession, adding calculations 
based on a 0.9 metre rise in the relative sea level for the 100-year projections, the ܴܵܮ dune 
recession values having increased to range between 14.5 and 64.3 metres, with a mean 
recession of 44.3 metres.  The CSL analyses therefore indicate that by the end of this century 
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the extent of erosional retreat of the dunes and ocean-front properties could exceed 50 metres, 
extending inland from the present-day seaward edge of the foredunes, results that are 
consistent with those projected on other coasts by other investigators, where the analysis 
methodology had also been based on the Bruun model. 
 
According to the shoreline time-series analysed in the CSL reports and presented as graphs in 
CSL (2008c) for the changing Cross-Shore Distance, net recession has dominated the shores 
south of Raumati throughout the 20th century, the rates having increased since about 1960.  The 
example in Figure 7 for C4-18, within the Queen Elizabeth Regional Park, shows an overall 
shoreline retreat of about 18 metres since 1870, 12 metres of it having occurred since 1950 
when the documentation was based on aerial photographs.  The maximum retreat in the study 
was found for site C6-57, a “natural” location that appears to be just south of the Raumati sea 
wall, it having experienced 70 metres recession since about 1910, about 55 metres since 1955, 
this higher recession rates likely in part due to the end effects of the seawall (CSL, 2008a, 
2008c), but with there being an order-of-magnitude agreement with the CSL future projections 
with higher rates of rising sea levels.  In contrast, along the accreting shores to the north, seen 
in the examples of C13-24 and C25-70 included in Figure 7, the net shoreline accretion seaward 
has respectively amounted to 60 and 90 metres, again demonstrating the significant role in the 
site’s sediment budget being in the “black”.   
 
As already discussed, the assessments by CSL (2008a, 2008b, 2012) of the trends in the cross-
shore distances to yield the long-term trend, ܶܮ, and here to determine the recession ܴܵܮ of the 
dunes produced by the relative rise in sea level, their summation in Equation (3) to yield the 
Coastal Erosion Predicted Distance (ܦܲܧܥ) represents a “double counting” of the recession 
caused by the rise in sea levels, that which occurred during the 20th century.  This practice has 
been justified by Dr Shand (April 2014) in his comments on our March draft, followed in that it 
provided a more conservative result that could in part substitute for not having included 
analyses of potential future increases in storm-generated wave heights.  Purposely double 
counting is a decidedly unconventional approach, and should not be followed, the question 
whether or not to account for a future increase in wave heights, and other decisions within the 
methodology of the analyses instead, should instead be accounted for in the uncertainty of factor 
of safety (Section 4.5). 
 
The SLR projections calculated by CSL (2008a, 2012) for the shoreline recession due to a rise in 
sea levels on the open coast are reasonable, but have moderately significant uncertainties based 
on the selection of the beach-profile slope used in the calculations.  Revisions of the results could 
be required, with updated projections of future sea levels 50- and 100-years in the future. 
 
There are large uncertainties in the projected 50- and 100-year sea levels, compounded by 
those in the analysis methodology applied to calculate the resulting shoreline recession and 
property erosion.  Within that range of projected sea levels, differences of opinion also exist as 
which should be used in management applications, there being arguments for the maximum 
projected levels in that they best represent a precautionary approach, while others have 
recommended that a mid-level “best estimate” as being the preferable choice (Willem de Lange, 
April 2014 comments), especially in the longer-term 100-year projections where the 
uncertainties are substantial.  Whatever projections of rising sea levels are accepted now for 
application in the analyses, they should be reappraised frequently in the future, based on 
measured sea levels showing accelerated rates of rise, improvements in the science applied by 
climatologists to provide more confident projections, and the availability of documentation of 
whether storm intensities and the generated waves are increasing, and should be included in 
these projections. 
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While the “residuals” and the resulting “fluctuations” in the time series of shoreline distances are 
of interest and worthy of analysis, it is important to understand the ocean processes and beach 
responses that are responsible for their occurrences.  The review comments by Richard Reinen-
Hamill (Tonkin and Taylor, April 2014) spoke favourably of their use in hazard assessments, 
based on his application of this approach, presumably because he was able to account for their 
origins.  However, this was not attempted in the CSL analyses of the short-term hazards for the 
Kāpiti Coast, not having included any analyses of the available data sets for the waves and tides 
that actually represent the short-term hazards.  
  
It is clear that the recorded residuals and fluctuations in the CSL analyses are not responses to 
major storms, and certainly not to the extreme but rare storm events that have annual 
exceedance probabilities (AEPs) of only 2% (50 year ARI) to 1% (100 year ARI).  Accordingly, 
their assessments of the ܵܮ component in Equation (3) cannot be considered to be robust, and 
does not sufficiently represent the “design” conditions needed to account for potential short-term 
erosion and flooding hazards. 
 
When an examination of past erosion events and their processes is undertaken, it becomes 
evident that an important consideration is the simultaneous occurrence of high storm-generated 
waves, together with elevated measured tides.  Examining this combination in greater detail, it 
generally is found that the erosion occurred in response to the increased swash run-up levels 
produced by the storm waves when they reached the sloping beaches, occurring atop the 
elevation of a high predicted astronomical high tide that has been elevated still further by the 
surge also produced by the storm. Other contributing factors to the elevated measured tides 
might be the normal seasonal cycle of monthly-mean water levels, being highest when the water 
is warm (thermal expansion), and changes in water levels associated with the El Niño/La Niña 
range of climate events. 
 
The Kāpiti Coast hazard analyses completed by Lumsden (2003) focused on such combinations 
of the processes, to determine the total water levels (ܹܶܮs) at the shore produced by episodic 
storm events, following the methodology of Ruggiero et al. (1996, 2001) that has been 
summarised in Section 3 and graphed in Figure 6(A).  Lumsden also included considerations of 
the El Niño/La Niña 20 to 30-year climate cycle, with elevated water levels occurring during La 
Niñas, and in the long term included 50- and 100-year projections of the rise in sea levels.  
Having derived process analyses of the resulting ܹܶܮs, for the present-day conditions and 
projected into the future, Lumsden (2003) applied the geometric dune-erosion model, also 
summarized in Section 3.  It was recognized that while assessments of the ܹܶܮs resulting from 
the combined processes yield a reasonably accurate evaluation of the potential erosion and 
inundation of shore-front properties, the geometric dune-erosion model provides an estimate for 
the possible extent of the maximum dune recession and property loss.  Although it exceeds the 
likely extent of the erosion, the model’s assessment of a conservative maximum erosion is of 
interest in management application, serving as the basis for a precautionary approach as 
recommended in the NZCPS 2010. However, having calculated this potential maximum, it may 
be desirable to also determine “more likely” dune recession distances, by including analyses of 
storms of lesser magnitudes in terms of the generated wave heights and surge levels, events 
that would have a more frequent occurrence.  It would also be beneficial to base the dune 
erosion assessments on geomorphic evidence from the site, it commonly being that following 
cut-back of the dune during an extreme storm, there is a prolonged period of dune regrowth, but 
with the preserved erosion scarp and the presence of drift logs providing direct evidence for past 
major storms.   
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It is significant that in his analyses of the Kāpiti Coast erosion hazards, Lumsden (2003) relied 
on the data sets for the waves and tides as recommended in the NZCPS 2010, recognising the 
significance of calculating the extreme ܹܶܮs that combine the processes, followed by providing 
an estimate (however approximate) of the potential dune recession.  As reviewed in Section 3, 
direct measurements of these processes were not available for the Kāpiti Coast when Lumsden 
began his investigation. Instead, to support his evaluations of storm-induced erosion scenarios, 
Lumsden (2003) commissioned NIWA to undertake model analyses of the waves, tides, storm 
surges and sea levels, with the results reported by Laing et al. (2000).  Hindcasts of the deep-
water wave climate (the significant wave heights, periods and directions) were based on a 20-
year record for the representative winds across the expanse of Cook Strait.  The NIWA analyses 
yielded a deep-water climate, and a corresponding time-series for ten shallow water sites along 
the Kāpiti Coast.  The predicted astronomical tides were analysed using standard models, the 
results showing that there are significant along-coast variations in the elevations and ranges of 
the tides, an important matter to take into account in the hazard-zone assessments (Laing et al., 
2000). Storm surge elevations during past major events were evaluated from barometric 
pressure measurements at the Paraparaumu Airport.  As reviewed in greater detail in Section 3, 
these analyses by Laing et al. (2000) of the ocean processes continue to be important in the 
development of scientifically based hazard zones for the Kāpiti Coast. 
 
In addition to being based on the waves and water levels determined by NIWA, Lumsden (2003) 
also commissioned the collection of detailed surveys of beach profiles, and in the deeper water 
offshore.  His analyses were completed for seven surveyed sites along the length of the Kāpiti 
Coast shore.  The wave swash run-up levels on the beaches were calculated using the semi-
empirical equation of Holman (1986), based on field data.  The calculated swash run-up level on 
the beach is its vertical component, and includes both the wave set-up in the nearshore and the 
swash of individual waves, the calculation depending on the significant wave height, wave period 
and of the beach slope.  An updated version of the Holman’s (1986) equation, supported by 
additional field data, has been published by Stockton et al. (2006), and can be employed in 
future analyses. 
 
As tabulated by Lumsden (2003, Tables 3.3 and 3.4), analyses are presented for both 50- and 
100-year projected scenarios, and included 0.20 and 0.45 metre increased sea levels for those 
respective projections based on the IPCC (2007) report.  Also included was a 0.10 metre 
increase in the measured tides to account for the potential occurrence of a La Niña climate 
event, known to elevate the tides throughout the winter.  Excluding longer-term climate 
projections, the evaluated ܹܶܮ for an exposed Kāpiti shore (Paekākāriki) was of the order of 
4.0 metres elevation above mean sea level (MSL), reduced to 3.5 metres (MSL) on the shore 
sheltered by Kāpiti Island (Paraparaumu - Raumati South).  As an example result, the beach 
profile at Paekākāriki had a slope of 0.057 (1V:17.5H, 3.2°)  and dune-toe elevation of 
2.5 metres (MSL), the geometric dune erosion model Equation (2) then yielding 26 metres for 
the predicted dune erosion setback during an extreme storm event.   
 
The importance of episodic extreme storm events in hazard assessments is apparent from these 
results, involving ܹܶܮ magnitudes of the order of 3.5 to 4.0 metres (MSL) for the Kāpiti Coast, 
greater than the projected rise in sea level spanning 100 years.  However, with rising sea levels 
the impacts of episodic extreme-storm events will achieve corresponding higher elevations, and 
reach further inland to affect many more properties than at present. 
 
In summary, the CSL (2008a, 2012) methodology directed toward assessments of the short-
term hazards from dune erosion and potential property losses are based on evaluations of the 
“residuals” and the resulting “fluctuations” in the time series of shoreline distances.  A major 
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shortcoming of this approach is that no analyses were undertaken to account for the causative 
ocean processes and beach responses.  It is the opinion of this Panel that the CSL assessment of 
the short-term ܵܶ component is not sufficiently robust to be used in Equation (3) to calculate the 
Coastal Erosion Predicted Distance (ܦܲܧܥ), as it does not adequately represent the extremes in 
the waves and tides needed to account for the Kāpiti Coast’s potential erosion and inundation 
hazards. 
 
In contrast to the CSL methodology, the methodology applied by Lumsden (2003) in his hazard 
analyses takes in account the wave conditions, the extremes in wave heights and swash runup 
levels on the Kāpiti beaches, and also on the measured tides that provide elevations of the 
predicted astronomical tides raised by the surge of major storms, and also climate controls such 
as the elevations of water levels elevated during La Niñas.  His analyses are based on the 
summation of the processes to determine the extremes in total water levels, which can be 
compared with the surveyed elevations of the dunes to assess the potential erosion and flooding 
impacts.  A dune-erosion model is applied to estimate the potential maximum erosion of the 
dunes for those total water levels, appropriate in providing a precautionary approach required in 
hazard assessments, as recommended in NZCPS 2010.   
 
It is the recommendation of this Panel that the analysis methodologies applied by Lumsden 
(2003) be adopted for evaluations of the short-term hazards on the Kāpiti Coast, although they 
will need to be updated in light of additional process data having been made available from 
recent investigations, and in particular due to changes in the projected future sea levels that are 
now more extreme than used in his 2003 analyses.  
 
Having completed revised evaluations of the 100-year extreme storm events, including the wave 
energies and total water levels (tides plus wave run-up) along the Kāpiti shore, it is 
recommended that engineering analyses be undertaken of the existing shore-protection 
structures, its variety of seawalls, to assess their capability of surviving the ocean forces and 
water levels expected to impact them.  Such analyses should first consider the present-day 
conditions, in view of there already being the potential for experiencing such an extreme storm 
event, and then analyse the 50- and 100-year projections with elevated sea levels, increasing 
the probability of these structures being overtopped and failing. 
 

4.4 Dune Stability Term Increase in the Dune Recession (Factor D and DT) 
Authors: J T Carley and P D Komar, Editor: P S Kench 
 
When storm waves and tides combine to yield total water levels (ܹܶܮ) that achieve the 
elevations of the dunes backing the beach, their erosional retreat can be very rapid since the 
dune’s loose sand provides minimal resistance.  The process is one in which the reach of the 
wave swash cuts away at the toe of the dune, initiating the collapse of the upper portions of the 
dune face, the waves then carrying away the sand into the offshore.  The result of an episode of 
dune recession is a nearly vertical scarp cut into the dune, devoid of vegetation cover.  The 
resulting scarp is unstable, and slumping soon occurs, particularly as the sand dries, with the 
slumped sand forming a talus accumulation in front of the dune.  The degree of slumping tends 
to slow with time as more talus accumulates, but the rate at which this occurs depends on the 
internal structure of the dunes (e.g., the presence of soil horizons) that locally provide some 
cohesion of the sand and resistance to slumping.   
 
While the analyses in Section 4.3 of the ܵ and ܵܶ components accounted for the rapid erosional 
retreat of dunes at the time of the storm, they do not include this slower post-storm phase in 
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the retreat of the dunes caused by the instability of wave-cut scarp.  The extent of the resulting 
horizontal retreat of the dunes depends on their height, the higher the dunes the greater the 
potential retreat, but the time required to accomplish that degree of loss also increases. The 
result can be a significant additional recession of the dunes, beyond that originally produced by 
the storm, the ܦ and ܶܦ components included in Equations (1) and (3).  The incorporation of this 
dune stability hazard component on sandy coasts is therefore supported by this Panel. 
 
The methodology applied by CSL (2008a) to calculate the distance ܶܦ of the post-storm retreat 
of the dunes, due to its instability, is acceptable for the northern portion of the Kāpiti coast, 
north of about Raumati, where the dunes are generally sandy (with isolated areas of cobble) and 
have a crest elevation below approximately 5 metres MSL.  This distance is relatively small for 
low dune crest heights, being approximately 74% of the dune crest elevation.  That is, a 5 metre 
dune crest would have a dune stability component of about 3.7 metres.  As a result, applying the 
CSL methodology is non-conservative relative to other accepted methods such as that of Nielsen 
et al. (1993), which assumes fully dry sand, and incorporates a factor of safety that reflects 
conventional geotechnical engineering practice. 
 
More elevated portions of the coast (south of about Raumati) are subject to more complex slope 
stability processes than the simple dune stability model used in CSL (2008a).  Issues include 
(but may not be limited to) the sand grain size adopted and the assumption of dry sand.  It is 
recommended that specialist geotechnical engineering advice be sought regarding slope stability 
in these areas. 
 
In areas where seawalls are present, consideration of a dune stability component is acceptable 
when investigating a scenario of seawall failure or removal.  
 
However, the dune stability component should be omitted from hazard zone calculations for an 
engineered seawall maintenance/repair/rebuilding scenario, since an engineered seawall would 
be designed to ensure slope stability. 
 

4.5 Uncertainty and the Factor of Safety (Factor CU) 
Author: J T Carley, Editor: R B Davies 
 
There are inherent uncertainties in defining coastal hazard zones.  CSL (2008a, 2012) applies a 
combined uncertainty distance of 6 metres for the 50-year projections, 10 metres for the 100-
year estimate.  Note that CSL (2008a) did not include the statistical error in the linear 
regressions and one can question the calculation of the uncertainty distances. 
 
The Gibb’s equation includes a factor of safety (a multiplier on the coastal hazard zone distance) 
that can range from 1.0 (essentially representing no factor of safety) to 2.0, and is generally in 
the range 1.15 to 1.30. 
 
Other jurisdictions specify a factor of safety on all, some, or none of the typical coastal hazard 
zone components.  This is largely a product of policies or accepted practices that have evolved in 
the jurisdiction. 
 
Where no factor of safety is adopted, conventional practice has been to adopt 
conservative/precautionary values.  While it is appropriate to include a safety margin, this needs 
to be done in a transparent way and after taking account of the uncertainties involved in the 
estimates. 
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Once the IMCs were defined, the IMC was translated landward by the values of the long-term 
historical shoreline behaviour, sea level rise and dune stability from a neighbouring open coast 
site to yield the inlet erosion hazard distance (IEHD). This will likely lead to conservative 
estimates, as the energetics on inlet/estuarine shorelines are typically lower than open coasts 
and are also heavily influenced by channel processes. 
 
The modified methodology developed by CSL for application to inlets is simple and not 
unreasonable given the inherent complexities in evaluating alongshore and cross-shore dynamics 
of inlets, and given the stated intent of the CSL (2008b, 2012) inlet reports to develop a ‘first 
approximation’ of inlet erosion hazards. Defining the envelope of historic inlet change is an 
accepted first order approach to projecting likely future envelope within which the inlet may be 
located along the coast into the future. However, it should be noted that defining the envelope of 
inlet change is constrained by available historic evidence of inlet positions. There are several 
weaknesses in the approach, which include: 

 Definition of the IMCs in some inlets has been constrained by management activity. In such 
instances the IMCs do not reflect the behaviour of inlets under natural processes making 
their application questionable to unmodified inlet scenarios. 

 The approach masks variability in the alongshore dynamics of inlet entrances. 

 The approach also assumes that the lagoon shorelines will migrate landward under the 
influence of coastal processes, which ignores the likely primary control on such shorelines, 
which are related to fluvial processes in the channel and the channel alignment before it 
breaches the sand/gravel spit. 

 As currently applied, it is assumed the coast will be erosional/recessionary, despite evidence 
that some parts of the coast and inlets have been in net accretion in the past. 

 
It is important to acknowledge that the CSL (2008b, 2012) inlet reports produced a first 
approximation of inlet erosion hazards. It is clear that the nature of the inlets along the Kāpiti 
Coast vary markedly in their physical and hydrodynamic characteristics and their history of 
modification. Consequently, better resolution of inlet hazards will require site-by-site analysis 
that allows the unique characteristics and historical behaviour of each inlet to be examined in 
isolation and incorporated into better contextualised analyses of inlet erosion hazards that 
account for the weakness outlined above. 
 

5.2 Issues of Submissions 

A significant number of submissions by coastal residents, presented at the December 2013 
meeting, involved issues related to properties adjacent to inlets. These submissions should be 
carefully considered if analyses for individual properties are undertaken at a future date. Two 
specific areas of concern in the submissions are examined below. 
 
First, a number of submissions raised the issue of incorporating on-going management of inlet 
entrances and rivers and whether these should be included in future projections of inlet zones. 
Many of the inlets have physical training works and/or bridge abutments in their lower reaches, 
stabilising channel alignment prior to the coast. In general, such practices constrain the dynamic 
behaviour of inlet entrances. Consequently, management practices have led to a smaller 
envelope of change than would normally exist under unmanaged scenarios. It was also noted 
that soft-engineering practices are used to reconfigure inlet entrances. Such practices involve 
manipulation of the sand volume at entrances to reorient inlet channels. 
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The Panel is of the view that the determination of whether or not management works are 
included in scenarios of future change is a planning policy decision, based on the medium to 
long-term intention to maintain river training works. However, the Panel would highlight the 
value of undertaking non-managed scenarios as they are instructive in highlighting what is 
potentially at risk and it informs the value of management interventions.  However, the 
unmanaged scenario should not become the default management option without additional 
stakeholder consultation and studies which consider social, economic and environmental factors. 
A second issue raised by submitters centred on the methodology of smoothing results of inlet 
analysis with adjacent open coast hazard zones. In particular, a number of submitters were 
concerned that they were affected by overly conservative hazard zones due to the spacing of 
open coast assessment sites. It was unclear precisely how this integration occurred as part of 
the CSL assessment; however, it is clearly an issue that requires consideration in refining the 
assessments.  
 

5.3 Panel Summary and Recommendation Regarding Inlet Hazard 
Assessments 

 The panel recognises that evaluating erosion hazards at inlets is complex and that the 
CSL methodology was developed to provide a first approximation only. 

 The panel agree that definition of the spatial extent of inlet dynamics provides a useful 
analogue to assess future behaviour. However, the construction of the Inlet 
Management Curves in some instances is constrained by historical management 
practices. In such instances the application of the IMC to future prediction should be 
undertaken with full recognition of the limitations of such curves as they can yield 
errant results. 

 It is recommended that site-specific assessments are undertaken at each inlet to better 
refine inlet erosion hazards. Such assessments should reflect the differing 
hydrodynamic and physical characteristics of inlets, differing morphological variability 
of inlets, estuarine shoreline dynamics of each system and the full history of 
management of each inlet to be captured. 

 The panel recommends that future inlet assessment include an analysis of the 
alongshore variations in inlet position. 

 Along with revised open coast assessments allow for scenarios of change under 
accretionary coast conditions. 

 Both managed and unmanaged scenarios should be evaluated. 
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It needs to be recognized that traditional extreme-value projections (such as 100 year ARI 
waves and water elevations) may no longer apply under a paradigm of changing climate, since 
the assumption of a “static” population no longer holds. 
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 Accommodation (optimising the coexistence of the built environment and natural 
processes); and 

 Protection through: 

o Soft engineering (such as beach nourishment); 

o Hard engineering (such as seawalls). 
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waves reaching this shore from the Tasman Sea.  Therefore, this potential hazard cannot at 
present be accounted for in assessments for this coast, but may need to be added later following 
additional research. 
 
Assessments of erosion hazard zones for the coasts of New Zealand follow the direction 
developed by Dr Jeremy Gibb, who formalised the approach in the relationship presented in 
Equation (1), that contains components that account for the short-term impacts (denoted by S in 
Equation (1)), the long-term trends that include the existing rate of change in the site’s 
shoreline positions (R), plus the change produced by the expected accelerated rate of rise in sea 
levels (X or SLR). Our review of the Lumsden (2003) and CSL (2008a, 2008b, 2013) analyses 
have focused primarily on their respective methodologies directed toward assessments of these 
components. 
 
The greatest difference between the Lumsden and CSL methodologies is in their short-term 
assessments, in relation to the present-day hazards from occurrences of major storm events, 
such as the 1976 storm and its impacts.  The Panel’s review of the different approaches in the 
analyses supports the need to base the short-term storm erosion assessment on evaluations of 
the total water levels (ܹܶܮ) reached by the combined elevated measured tides plus the swash 
run-up levels of the storm waves on the beaches, the measured tides having included storm 
surges and other processes that elevate water levels above the predicted astronomical tides.  
This is the approach that was followed in the Lumsden (2003) report, which was based on model 
assessments of both the waves and tides, since direct measurements are not available for the 
Kāpiti Coast.  His analyses need to be updated, however, in that additional assessments of the 
waves have subsequently become available (MetOcean, 2007, 2010).  The analyses also need to 
be revised for the increased projection of the 2100 sea level, having previously used the mid-
range IPCC level.  With the methodology followed by Lumsden (2003) being directly related to 
the waves and tides, it most easily incorporates an analysis that accounts for the increasing 
wave heights and their swash run-up levels on the beaches, if they are later demonstrated to be 
important on this coast.  With these updates, the results will be predictions of the present, 50 
and 100-year hazard zones for the Kāpiti Coast, based on considerations of the extremes in the 
ocean processes.  
 
A major contribution by the CSL reports is their analysis of the long-term trends of changing 
shoreline positions, based on data derived from aerial photographs and older maps, completed 
for 68 sites including 12 inlets that required applications of modified analysis methodologies that 
account for channel migrations of the shorelines. The analysis procedures are complicated, 
having accounted for the presence of shore-protection structures (e.g. seawalls) and whether 
they will be maintained in the future with rising sea levels.  They are also complex in the 
applications of linear regression analyses, where for some shoreline sites the multi-decadal 
trends of shoreline positions are significantly nonlinear.  Questions have been raised in our 
report concerning assumptions made in these analyses, that need to be considered with 
revisions possibly needed in the estimated hazard zones.   
 
The procedure used by CSL to assess the short-term changes in the shoreline positions – i.e., 
their “fluctuations” – depends on their “random” variations over the years from the linear 
regression line.  While an analysis of these variations is of interest, the processes that produced 
them remain uncertain, and it is likely that they do not represent the potential extreme impacts 
of a 100 year ARI (1% AEP) storm event, required in the development of a conservative 
recommended hazard zone. 
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Complex and less well understood processes also occur around the coastal inlets.  The Panel 
supports the separate consideration of inlets in their hazard assessment. The Panel endorses the 
use of the CSL inlet approach, though refinements in application would be useful in future 
iterations to:  

 Allow probabilistic analysis of shoreline positions within the envelop of change; and 

 Evaluate alongshore variations in inlet location.  

 
Along with revised open coast assessments, scenarios of change under accretionary coast 
conditions should be considered for inlets.  Both managed and unmanaged inlet scenarios should 
be evaluated – the basis of this is to inform stakeholders of the consequences of an unmanaged 
scenario. How the inlet and open coast hazard zones are merged should be reconsidered and a 
transparent procedure invoked. Given the long history of hard and soft inlet management, the 
unmanaged scenario should not become the default without further stakeholder consultation, 
social, environmental and economic assessment. 
 

8.3 Recommendations 

While the hazard lines proposed by CSL are not sufficiently robust for incorporation into the 
Proposed District Plan, data sets and components of the analyses completed by Lumsden and 
CSL are of sufficient quality to be adopted in the development of revised hazard lines, but need 
to be modified somewhat in details of their methodologies, and updated to account for the most 
recent analyses of trends in rising sea levels, changes that are required to yield best practice 
hazard lines for the Kāpiti Coast. 
 
There are a number of immediate actions recommended by the Panel that should be undertaken 
to improve the robustness of the hazard mapping before any consideration of the management 
of risk is undertaken as part of the formulation of planning policies.  In the longer-term (i.e., 
over the ten year term of the next District Plan), the Panel recommends that a series of studies 
be undertaken to enhance the information base applied in the coastal hazards mapping. 

8.3.1 Immediate Actions 

The Panel’s recommendations based on its review therefore include the following: 
 

1. The analyses by Lumsden (2003) be updated to include the additional wave hindcast 
data available from the MetOcean reports, and the increased sea levels that are now 
projected by climatologists to be of the order of 1 metre by the end of this century.  
Expected to be particularly significant are improved assessments of the “short-term” 
factors that represent present-day hazards, as well as providing determinations of 
potential future hazard zones based on the causative processes affected by Earth’s 
changing climate.  The updated results from Lumsden should be used for the short-term 
factor, replacing CSL’s “fluctuation” values in the recommended hazard-zone lines. 

 
2. Having completed revised evaluations of the short-term, 100-year ARI extreme storm 

events, including the wave energies and total water levels (tides plus wave run-up) 
along the Kāpiti shore, it would be informative to undertake engineering analyses of the 
existing shore-protection structures, its variety of seawalls, to assess their capability of 
surviving the ocean forces expected to impact them. 
 

3. The respective contributions produced by sea-level rise during the 20th century be 
separated from that produced by gains and losses of beach sand at that site, its 
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sediment budget, and eliminate the “double counting” of the rise in sea level from the 
projected 50- and 100-year hazard zones.  

 

8.3.2 Future Studies 

The Panel recommends that the following actions be undertaken as part of ongoing revisions to 
coastal hazard assessment and planning for Kāpiti over the next decade: 
 

1. Analyses of beach-sediment budgets be undertaken to determine the gains and losses of 
the beach sand that should account for the shoreline changes found in the CSL 
determinations, possibly providing an explanation for the nonlinear trends found at some 
sites, and with the sediment budget also permitting an assessment of how far into the 
future the accretion of its central cuspate shore will revert to erosion and eventually 
disappear.  It is also important to undertake investigations of the rivers, the sources of 
the beach sand, specifically how global warming or human environmental impacts could 
alter them, resulting in changes in volumes of sand being contributed to Kāpiti beaches. 

 
2. Develop probabilistic methods for quantifying coastal hazards in future assessments, 

rather than just “extreme”, “design”, 100-year ARI or high-range projections. 
 

3. Continue ongoing monitoring of the beaches, including periodic surveys with an 
extension of the bathymetric surveys. 

 
4. If the long-term trends are used in setting the hazard zones, the regression analyses 

should be reworked in conjunction with a qualified statistician, preferably one with 
experience with time-series analysis. 

 

8.4 Concluding Remarks 

The Panel has concluded that the reports by John Lumsden and CSL represent contributions 
directed toward assessments of hazard zones for the Kāpiti Coast.  However, the current hazard 
mapping is not sufficiently robust to be used for planning policies and regulation within the 
District Plan. 
 
With the combined contribution of the Lumsden processes-based analyses of short-term hazards 
resulting from extreme storm events, with those from CSL that document the long-term trends 
of changing shoreline positions, the Kāpiti Coast District Council would derive erosion hazard 
zones in which both the engineering and geologic aspects are accounted for, in effect “the best 
of both worlds”. 
 
In terms of the implementation of these recommended zones, in many respects, the most 
important consideration should be the short-term hazards since they are immediately relevant in 
the form of the potential occurrence of a 100-year ARI storm during the coming winter.  In 
comparison, the long-term progressive rise in sea levels and increasing wave heights begin 
slowly and only make significant contributions to the hazards decades in the future, their main 
effect being to shift the zone of short-term hazards landward, impacting additional homes and 
infrastructure.  Such differences in the immediacy of the hazards could be reflected in the 
management approaches adopted to minimise human impacts; for example, in the degrees of 
restrictions placed on residents. 
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Finally, it is important to recognise that the coastal hazard zones are not a management plan as 
such, but simply inform management options, the Panel recommends that a range of 
management options be developed and considered with the community before hazard lines and 
their respective policies and regulations are introduced into the District Plan.  Noting that the 
definition of risk is likelihood times consequence, risk may therefore be managed by changing 
either the likelihood or the consequence. 
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Emeritus Professor of Oceanography, Oregon State University, Corvallis, Oregon, USA. 
 
Dr Komar received Masters Degrees in Mathematics and Geology (1965) from the University of 
Michigan, and a PhD in Oceanography (1969) from the Scripps Institution of Oceanography, 
having undertaken thesis research on the processes of sand transport by waves and currents on 
beaches.  He then spent 1970 on a NATO post-doctoral fellowship in the UK, six months at St. 
Andrews University in Scotland, and six months at the Wallingford Hydraulic Research Station in 
England where he worked with coastal engineers.  The balance of his career has been in 
Oceanography at Oregon State University, with the focus of his research having been on the 
processes of erosion along the coast of the U.S. Pacific Northwest, including the impacts of 
climate change (global warming and the El Niño/La Niña cycles) on sea levels and storm-
generated wave heights.  In recent years he has been involved in studies of the Hawke’s Bay 
coastal hazards, undertaken for the Regional Council.  He is author of the textbook Beach 
Processes and Sedimentation (1976 and 1998 editions, Prentice-Hall).  
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